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Intense physical work is characterized by activity of physiological mechanisms as interrelated components joint for physical exertion. Definition of a set of individual
and typological patterns of the physiological mechanisms’ activity answers the questions related to improvement of the athlete’s potential realization efficiency,
definition of the limiting components and body’s reserve capacity, training load management. The study was aimed to assess the relationship between the responses
of physiological mechanisms associated with standardized physical exertion and the pre-start state parameters. The athlete was through the step incremental test
with the treadmill involving recording of the gas exchange parameters and heart rate to study physiological patterns. The physiological response parameters were
calculated relative to the key phases of the exercise test: pre-start state, aerobic and anaerobic thresholds, peak exertion, rapid and slow recovery phases. The
mathematical model “Horseshoe of Rest” characterizing the athlete’s pre-start state before performing the test was constructed using the T-SNE dimensionality
reduction algorithms. The model enables estimation of the release of non-metabolic CO, throughout the testing period (MIC — 0.29) and the exertion period
(MIC — 0.35).
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Regular muscle work of considerable volume and intensity is
ensured by the coordinated activity of various physiological
mechanisms reflecting the systemic nature of the response to
exertion [1-3]. In this context physiological mechanisms and
appropriate responses mean the set of interrelated components
and their responses to the standardized incremental exercise
to failure. Each physiological mechanism has a common
architecture and is distinguished by the characteristics of
its components, to which, in our opinion, it is appropriate
to attribute the sources of energy supply (aerobic, lactatic
and alactic ATP resynthesis pathways) and the factors of their
realization characterizing the dynamic and processual aspects
of energy supply (performance, capacity, rate of deployment
and switching between various ATP resynthesis pathways).
These physiological mechanisms provide the leading functional
system (LFS) that is responsible for the goal-directed activity
realization at the whole-body level [4, 5]. Performing the activity
requires an adequate (depending on the exercise characteristics)
level of body’s physiological reserves. Energy generation is
ensured by the coordinated activity of the cardiovascular,
respiratory, muscular, nervous, hemic systems, etc. [6]. The
required physical performance intensity can be ensured by
the adequate energy generation level only [7, 8]. Definition of
a set of individual and typological patterns of the physiological
mechanisms’ activity answers a number of questions related
to improvement of the athlete’s potential realization efficiency,
definition of the limiting components and body’s reserve
capacity, training load management aimed at ensuring health
preservation and professional longevity [9-11]. Due to complex
organization of physiological patterns associated with muscle
work, assessing such patterns using mathematical modeling
and machine learning algorithms seems to be promising
[12-15]. For example, there are a number of successful
solutions for prediction of lactate threshold in amateur runners
using recurrent neural networks [12, 16].

It should be noted that the functional system development
involving cortical influences begins even before the start of
intense physical exertion (competitions or exercise testing
to failure) (pre-start state). We believe that the correlation of
pre-start state with physiological response to physical exertion
is important, since it will make it possible to predict in advance
the responses of body’s systems.

The study was aimed to assess the relationship between
the responses of physiological mechanisms associated with
standardized physical exertion and the athlete’s pre-start state.

METHODS

The study involved althetes aged 24.7 + 4.0, who specialized
in complex-coordination and cyclic sports and were first-class
sportsmen or candidates for master of sport. The athletes were
tested in the preparatory period of the annual training cycle.
Assessment results of 1495 athletes were used to build the

Table 1. Values of the assessed athletes’ pre-start state primary parameters

models. The subjects were through standardized exercise testing in
the form of the treadmill incremental exercise. The exercise testing
protocol was as follows: first stage — 5 km/h, stage duration —
2 min, speed increment at each stage —1.5 km/h. The following
primary parameters were recorded within 3 min before testing
(pre-start state), during testing and during the recovery period
(15 min) using the Oxycon Pro ergospirometry system (Erich
Jaeger; Germany): heart rate (HR, bpm), minute ventilation (VE, L/min),
oxygen uptake (VO,, L/min) and carbon dioxide production (VCO,,
L/min), respiratory exchange ratio (RER), oxygen pulse (O,HR,
mL/beat), respiratory oxygen equivalent (EqO,) and carbon dioxide
equivalent (EqCO,). The criterion for stopping was the athlete’s
failure or reaching a maximum estimated HR (heart rate) calculated
according to the following formula:
HR_, =220 - age.

Failure when doing exercises was reported in 1358 athletes,
137 athletes were stopped after reaching the maximum HR.

When assessing physiological responses, parameters in the
following phases of exercise testing were taken into account:

1) pre-start state;

2) aerobic threshold;

3) anaerobic thershold;

4) rapid recovery phase.

Phases two, three, and four were set using the AT_Inter
tool [16] using a recommender system to determine the aerobic
and anaerobic thresholds and the rapid recovery phase by
conventional methods and machine learning methods (cluster
analysis) [8]. More than 100 indicators characterizing the body’s
physiological responses to the standardized physical exertion
were calculated based on primary parameters.

Data processing was performed using Python 3 and scikit-
learn libraries (open-source machine learning libraries). The
Maximal Information Coefficient (MIC) was used to estimate
nonlinear relationships between the parameters [17]. The
indicator’s range is 0—1, where O corresponds to statistical

Fig. The “Horsechoe of Rest” model of pre-start state

Parameter Mean Error of the mean

HR 86.1 12.9
VE 15.7 3
VO, 519.1 98.6

VCO, 417.6 86.3

O,HR 6.1 1.3
EqO, 271 34

EqCO, 33.6 3.5
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Table 2. Correlation between non-metabolic CO, and characteristic 2 of the “Horsechoe of Rest” model

Parameter Coordinate 2
CO,_non_physiol_total 0.29
CO,_non_physiol_L 0.35

independence and 1 corresponds to dependencies between
parameters. The critically significant level of the relationship
used in the study is 0.2 at p < 0.05.

RESULTS

The athlete’s body state in the first phase of exercise testing is
characterized by changes in the function of body’s physiological
systems, such as cardiovascular and respiratory systems,
resulting from cortical influences associated with the upcoming
intense physical exertion (Table 1).

The correlation analysis revealed no significant correlations
between the pre-start state primary parameters and the
indicators of body’s physiological response to the standardized
physical exertion (p > 0.05). That is why we decided to use
the dimensionality reduction t-SNE algorithm for reduction to
three-dimensional map in order to build a “Horsechoe of Rest”
model characterizing the pre-start state (Figure). The t-SNE
algorithm (t-distributed Stochastic Neighbor Embedding) is
a nonlinear dimension reduction technique [18, 19]. The main
idea of the method is the search for the multidimensional feature
space projection onto a plane, from n-dimensional space to
three-dimensional, i.e. the search is performed for new data
representation, with which the neighborhood observations
are preserved [20]. Primary parameters of the pre-start state
were input to the described algorithm. The new synthetic
characteristics 0, 1 and 2, which accumulated information
from original characteristics but had no clear interpretation,
were the output. Each point of the “Horsechoe of Rest” model
corresponded to one observation having characteristics 0, 1 and
2 (Figure). All observations formed a horseshoe indicating that
there was a pattern inherent to the athletes’ pre-start state.

The MIC value was calculated to evaluate the non-
linear relationship between the parameters obtained during
the major phases of testing and the interpretation of new
synthetic characteristics 0, 1 and 2. The findings showed
that coordinates 0 and 1 showed no significant correlations
(the maximum correlation values did not reach the critically
significant level, MIC = 0.2) with the exercise testing results.
The characteristic 2 showed a significant correlation with the
non-metabolic carbon dioxide emission: 1) over the period of
testing (CO,_non_physiol_total); 2) over the period of exertion
(CO,_non_physiol_L). MIC was 0.29 and 0.35, respectively
(Table 2). Non-metabolic CO, was calculated for the period
of exertion and the recovery period as the amount of carbon
dioxide emitted that exceeded the level at RER O > 1.
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DISCUSSION

The non-metabolic CO, associated with intense physical
exertion is generated due to activity of anaerobic lactic
mechanism and neutralization of its metabolites by buffer
systems, specifically by plasma bicarbonate. Thus, the pre-
start state parameters allow one to judge the activity of this
mechanism and the systems maintaining homeostasis via
CO, removal from the lungs, neutralization of increased acidity
by buffer systems of blood, primarily by bicarbonate and
hemoglobin systems, involving carbonic anhydrase [21]. CO,
removal also depends on individual perfusion characteristics of
the lung alveoli [22, 23].

The literature provides very little data on the role and
significance of CO, emission for assessment of physical
performance [24]. The majority of researchers pay attention
to the maximum oxygen uptake and uptake at the aerobic
threshold level when evaluating physical performance.
However, the athlete’s body capacity depends not only on the
consumed amount of O, as an equivalent of energy production,
but also on the parameters limiting physical performance,
specifically on CO, emission as an integral indicator of the
anaerobic mechanism activity [25]. It is well-known that the
increase in CO, levels and the decrease in pH to the known
values resulting from the anaerobic lactate mechanism activity
stimulate the LFS, and the values moving out of the optimal
range inhibit the system due to inhibition of the enzyme
systems’ activity, reduced nerve impulse transmission speed,
muscle contractility, etc. [26-28].

CONCLUSIONS

The relationship between the new synthetic characteristic 2
and the values of non-metabolic carbon dioxide emission
associated with the standardized physical exertion has been
revealed based on the “Horsechoe of Rest” model developed.
The non-metabolic CO, value is an integrated parameter of
the anaerobic lactate mechanism activity and the mechanisms
underlying utilization of its metabolites having a significant
impact on the LFS [27]. In subsequent papers we are going to
show the value of non-metabolic CO, for the duration of doing
incremental exercises to failure and introduce the study results
into the already constructed model [16] in order to determine
individual and typological patterns of the physiological
mechanisms’ activity associated with the standardized physical
exertion.
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