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The review is dedicated to matters related to epidemiology and pathogenesis of multisystem inflammatory syndrome associated with SARS-CoV-2 in children
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Keywords: children, multisystem inflammatory syndrome, pathogenesis, SARS-CoV-2, COVID-19

Author contribution: Konstantinova YUE, Alekseeva LA, Glotov OS, Egorova ES — search for literature, manuscript writing and editing, approval of the final
version of the article; Vilnitz AA, Bekhtereva MK — concept development, search for literature, manuscript writing and editing, approval of the final version
of the article.

<] Correspondence should be addressed: Yulia E. Konstantinova
Professora Popova, 9, Saint Petersburg, 197022, Russia; yulia.konstantinova23@mail.ru
Received: 25.08.2023 Accepted: 10.09.2023 Published online: 30.09.2023
DOI: 10.47183/mes.2023.040

COBPEMEHHbIE NPEACTABJIEHUA OB SNMUAEMUOJIONMIA N NATOMEHE3E MYJIbTUCUCTEMHOIO
BOCNAJIUTENIbBHOIO CUHAPOMA Y AETEW, ACCOLIMMPOBAHHOIO C SARS-COV-2
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O630p MOCBSILLEH BONPOCaM anAEMMONoriv 1 naToreHesa MynsTUCUCTEMHOrO BOCMaIMTENbHOMO CUHOPOMA Yy AeTel, accouumpoBaHHoro ¢ SARS-CoV-2
(MBC-L). Hanbonbluee 4mcno npoaHanmanpoBaHHbIX NyGnmnkawmi NocBsLLEHO MMMyHoMNaToreHeay 3aboneBaHist. B cTaTbe nepedmcneHbl BO3MOXHbIE MPUHMHBI
BOSHWKHOBEHWSI CUHAPOMA, CBSA3aHHbIE C 0COOEHHOCTAMM BMPYCa, OnrcaHa CBA3b C LIMPKYMPYIOLLMMIN BapuaHTaMn. PaccMoTpeHa ponb NOBEPXHOCTHOMO benka
SARS-CoV-2 kak cynepaHTureHa. MpuBeaeHo o6Cy»KaeHre nMTepaTypHbIX AaHHbIX O BO3MOXHOCTK passuTiis MBC-L no mMexaHn3My aHTUTeno3aBuMcUMOoro
yeuneHns nHdekuum, PazobpaHbl (hakTopbl KNETOYHOrO Y ryMopasibHOro MMMYHHOMO OTBETA, CMOCOBCTBYIOLLIME Pa3BUTUIO MNEPBOCMaNUTENBHOrO OTBeTa.
[MpencraBneHbl eanHNYHbIE PABOTbI, ONCHIBAIOLLME MEHETUHECKIME MyTaLM, KOTOPbIE MOTYT UrpaTb ONpeaeneHHyto ponb B natoreHede MBC-/. Momumo sToro
paccMOoTpEHa CBsi3b MeX[ly BakLVHaLMEN NPOTVB HOBOW KOPOHABMPYCHON MHEKLMN 1 BEPOATHOCTLIO passuTiis MBC-[ y npusmTbIX.
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The multisystem inflammatory syndrome associated with
SARS-CoV-2 in children (MIS-C) is the condition occurring within
2—6 weeks after novel coronavirus infection caused by SARS-
CoV-2 (COVID-19), it is characterized by severe inflammation
affecting two or more organs or systems (mostly skin, mucous
membranes, cardiovascular system, gastrointestinal tract).
According to the data reported by various authors, 36-80%
of patients are admitted to intensive care units (ICU), 10-20%
of children need mechanical ventilation (MV), about 1%
need extracorporeal membrane oxygenation (ECMO) [1-3].
Researchers still have no consensus whether MIS-C is a
complication of COVID-19 or a distinct nosological entity.

MIS-C was first reported in school-age children by
researchers from the UK in the beginning of the COVID-19
pandemic [4]. To date, the development of this syndrome has
been reported in patients of various age cohorts, including
newborns and young adults, however, MIS-C is most often
found in children and adolescents [5, 6].
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Today, criteria issued by the World Health Organization
(WHO) [7] also provided in domestic guidelines [8] are used
to diagnose MIS-C in most countries of the world, including
the Russian Federation. According to these criteria, MIS-C
occurs 2-6 weeks after recovery from COVID-19, most often
in children and adolescents aged 0-19. It is characterized by
pyretic fever (= 3 days), involvement of two or more organs
or systems, elevated levels of inflammatory markers, and no
information about the presence of infectious agents capable
of causing such symptoms [7].

As defined by the US Centers for Disease Control and
Prevention (CDC), MIS-C is a clinically severe disorder
characterized by fever, elevated levels of inflammatory markers,
and impaired function of several organs and systems, which
requires hospitalization of the patient. It develops against the
background of recent confirmed or probable COVID-19, while
there is no other possible explanation of the disease clinical
manifestations [9].
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Etiology

Regardless of the MIS-C definition used, both options imply
that the disease occurs due to prior SARS-CoV-2 infection
regardless of the previous COVID-19 severity. The detection of
specific immunoglobulins G (IgG) against novel coronavirus in
the majority of patients is evident of the association between
the disease developed and previous COVID-19. The presence
of acute infection markers (IgM against SARS-CoV-2 and
extraction of SARS-CoV-2 RNA) was reported only in 5-10%
of sick children. These patients were clinically consistent with
the MIS-C criteria, and the more thorough questioning showed
that children had recently had COVID-19 or were in contact
with COVID-19 patients [10].

In the beginning of the pandemic the evidence of contact
with the COVID-19 patient within four weeks before developing
the symptoms was enough to diagnose MIS-C as one of the
criteria due to high incidence of the infection. Meanwhile,
additional information is currently required to determine the
association between MIS-C and previous COVID-19, which
is due to a number of reasons. After three years from the
beginning of the pandemic more than 80% of the population
have IgG against SARS-CoV-2; IgM fade away within 3-4
weeks since the moment of infection and most often are not
detected in the midst of MIS-C, that is why serological tests are
not representative in such cases [11].

Second, the number of COVID-19 cases is decreasing,
COVID-19 is becoming a seasonal respiratory infection by
integrating into the structure of numerous viral infections
manifested by respiratory tract involvement. As for daily practice,
etiological decoding of uncomplicated acute respiratory tract
infections is extremely rare, especially in outpatient practice,
which is explained by both economic reasons and the results’
negligible impact on the treatment tactics. That is why patients
are less frequently tested for SARS-CoV-2.

Third, MIS-C is similar to other disorders characterized by
severe inflammatory response (staphylococcal or streptococcal
toxic shock syndrome, hemophagocytic syndrome, Kawasaki
disease (KD), bacterial sepsis, etc.) in terms of clinical
manifestations, which makes it more difficult to diagnose the
syndrome[12, 13]. The case reports of viral infection (adenovirus,
cytomegalovirus, Epstein—Barr virus) with the course similar to
multisystem inflammatory syndrome were found in the literature
before the pandemic, however, pathogenesis of this condition
was also poorly understood. This resulted in controversy in
the scientific community regarding the role of other infectious
agents in the MIS-C development [14-16].

The researchers assumed the role of additional infectious
agent in the MIS-C realization [17]. The authors of the report
considered the probability that additional infectious agent
acted as a trigger in patients having the history of COVID-19.
Superinfection can trigger an acute infllmmatory episode
of MIS-C. Furthermore, despite the fact that no signs of the
herpesvirus reactivation or persistent viral or bacterial infection
have been found in the patients’ peripheral blood, this theory
also requires further research.

Understanding the causes of MIS-C is essential for
development of optimal tactics for therapeutic interventions in
patients with this disorder. Despite the symptoms’ similarity, the
MIS-C treatment is dramatically different from therapy of the
number of conditions, such as sepsis, with which it is most
often necessary to carry out differential diagnosis. Exclusion
of bacterial pathogens that are significant for the syndrome
development makes it possible to avoid antibacterial therapy;
the symptoms are stopped after administration of high-dose

intravenous immunoglobulins, systemic glucocorticoids, and,
in rare cases, inhibitors of interleukin-6 (IL6) and interleukin-1
(IL1) receptor antagonists. By analogy with the KD therapy,
acetylsalicylic acid is prescribed to prevent thromboembolic
complications [8]. Untimely diagnosis results in delayed
prescription of essential therapy, thereby adversely affecting the
disease outcomes and prognosis.

Epidemiology

Since etiological diagnosis of MIS-C is difficult, and clinically the
syndrome has no pathognomonic signs and is similar to other
disorders characterized by severe inflammation, true MIS-C
incidence in the population is likely to be underestimated.
Foreign research has shown that the prevalence of the
syndrome is 2 cases per 100,000 population under the age
of 21 years [1] or less than 1% of children having a history of
COVID-19 [2].

A total of 230 MIS-C cases were reported in Europe and
the UK by 15 May 2020 (within a month after the first reported
case), among which two (one in the UK and one in France)
were fatal (0.87%) [18].

According to the data posted on the CDC official website
(as at 3 July 2023), a total of 9499 MIS-C cases were reported
in the USA, 79 children died (0.83%). The syndrome detection
rate varied significantly from state to state. The largest number
of cases was reported in such states, as California (more than
800) and Texas (600-800). About 46% of patients were children
aged 5-11, among them boys prevailed (60%). About 57% of
patients were of Hispanic ancestry (2358 children) or were
African Americans of non-Hispanic ancestry (2720 individuals) [8].

The Public Health Agency of Canada reported 269
MIS-C cases between 11 March 2020 and 2 October 2021.
The association with previous COVID-19 was confirmed by
epidemiology data or laboratory tests only in 142 individuals
(63%). The average age of patients was 6 years, among
them boys prevailed (58%). A total of 36% of patients needed
admission to ICU [19].

Following identification of various SARS-CoV-2 variants,
there had been emerging evidence of the relationship between
certain virus variants and the MIS-C detection rate. According
to the data provided by CDC, the largest number of cases in
the USA was reported between October 2020 and May 2021
following the rise in COVID-19 incidence caused by the “alpha”
variant. The second “wave” of MIS-C took place in September—
November 2021 during circulation of the “delta” variant, and
the third one occurred between December 2021 and March
2022, immediately after the incidence peak caused by the
“omicron” variant. Sporadic MIS-C cases have been reported
since February 2023 [8].

The studies conducted in Canada have also revealed
several incidence peaks: peak in May 2020 associated with the
Wuhan variant and two waves, between November 2020 to
March 2021 and in May 2021, caused by “alpha” variant [18].

Comparative analysis of the MIS-C incidence in the UK
conducted by the research team [20] showed that number of
the disease cases caused by “delta” variant was 56% lower
before the start of mass vaccination and 66% lower after the
start of mass vaccination relative to the wave caused by “alpha”
variant; the number of cases caused by “omicron” variant was
95% lower.

Similar data were obtained in Australia. The Australian
Paediatric Active Enhanced Disease Surveillance network
(PAEDS) revealed only 95 MIS-C cases between 1 May
2020 and 30 April 2022. In New South Wales, Queensland
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Fig. 1. Schematic representation of antibody-dependent enhancement: binding of SARS-CoV-2 by non-neutralizing antibodies — presentation of the virus to the cell —
virus uptake into the monocyte/macrophage — virus replication in the cell — release of SARS-CoV-2 copies. Adapted from [32]

and Victoria the following number of cases was reported:
10 (3-26) MIS-C cases per 10,000 visits during the period
before the emergence of “delta” variant (4 cases), 5 (4-7) cases
per 10,000 visits during the period of “delta” variant circulation
(80 cases), 0.8 (0-1) cases per 10,000 visits during circulation
of “omicron” variant (61 cases) [21, 22].

Dependence of the MIS-C rate on the COVID-10 incidence
peaks is an indirect evidence of the SARS-CoV-2 etiologic role
in the syndrome pathogenesis, and the risk of the syndrome is
likely to be associated with its genetic variant.

There are no official data on the rate of MIS-C in Russia.
The majority of domestic publications are represented by case
reports and reviews [23-25]. The researchers analyzed the
data of 122 children with MIS-C aged 8.9 (56.3; 11.8), among
them more than a half were boys (56.6%). A total of 45.1% of
patients were admitted to ICU [26].

Pathogenesis
Multiple studies are focused on explaining the mechanisms
underlying the MIS-C development. Since MIS-C was similar

to KD, macrophage activation syndrome, and cytokine release
syndrome in terms of clinical features, it was hypothesized

SARS-CoV-2

that MIS-C resulted from hyperimmune response to the
virus (as in the above conditions) in the beginning of the
pandemic. However, most researchers tend to think that the
MIS-C development mechanism differs from that of the above
conditions [7, 12, 18, 27].

Currently, several theories of the MIS-C pathogenesis are
discussed, among which the most popular are as follows:
abnormal innate immune response to infection resulting
from the cross-reaction between viral antigens and antigens
of the host; response to the ongoing virus replication in the
unrecognized viral reservoirs; superantigen theory; antibody-
dependent enhancement (ADE). Researchers do not rule out
the impact of genetic or epigenetic predisposition. Actually, it
is more likely that there are concurrent mechanisms underlying
the MIS-C development [28-31].

The theory of ADE associated with the SARS-CoV-2
infection was one of the first hypotheses. Since the detection
rate of specific antibodies against SARS-CoV-2 was higher
than the rate of viral RNA detection by PCR, it was suggested
that antibodies against SARS-CoV-2 could be among the
disease triggers. The non-neutralizing antibodies (nNNADb) are
produced after the first exposure to novel coronavirus. Some
nNADb target specific region of viral spike protein (S-protein),
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Fig. 2. Schematic representation of antibody-dependent enhancement: binding of SARS-CoV-2 by non-neutralizing antibodies — immune complexes’ formation and

deposition in the tissues — hyperimmune response. Adapted from [32]
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that is why MIS-C can develop according to the scenario of the
ADE syndrome leading to viral replication in macrophages and
disruption of numerous human cells (Fig. 1).

After binding to the macrophage Fc receptors, the virus-
antibody complexes settle in tissues and lead to abnormal
immune response regulation and enhanced cytokine
secretion after the complement activation. Active production
of inflammatory mediators contributes to the increased blood
vessel permeability, fever, shock, and severe multiple organ
damage (Fig. 2).

Meanwhile, as data on SARS-CoV-2 accumulated, it was
found that the virus did not infect macrophages, that is why the
ADE type involving Fc receptors was unlikely, and low affinity
nNAb were produced in small amounts, hardly recognized the
virus and did not bind to it [28, 33-34].

The hypothesis about the role of superantigens is based on
the MIS-C clinical similarity to toxic shock syndrome caused
by bacterial exo- and endotoxins. Superantigen can cause
nonspecific activation of the large number of T cells, which, in
turn, also produce pro-inflammatory cytokines and chemokines,
thereby initiating autoimmune inflammation. High similarity of
the SARS-CoV-2 spike protein subunit 1, S1 (responsible
for binding of the virus to the host cell receptor), and the
fragment of staphylococcal enterotoxin B, the superantigen,
was revealed (Fig. 3). Assessment of peripheral blood samples
from patients with MIS-C by immunosequencing revealed
the TRBV11-2 gene expansion that was correlated to the
MIS-C severity and the serum levels of cytokines, which was
consistent with the features of immune response caused by
superantigen. The long-term persistence of SARS-CoV-2 in the
gut of patients with MIS-C and circulation of the viral protein S1
subunits support this theory [35, 36].

The reports show that prolonged SARS-CoV-2 persistence
in the gastrointestinal tract of children with MIS-C resulted in
the release of zonulin (intestinal permeability marker) followed
by the SARS-CoV-2 antigens entry in bloodstream and the
development of hyperinflammation [37]. The data obtained
by the authors are consistent with the other study results:
genetic factors (expansion and activation of the TRBV7117-2+
gene) alters the diversity of the T cell receptors in children
with MIS-C, which, in turn, can be induced by superantigen
[38, 39].

Genetic analysis showed that enrichment of rare pathological
variants affecting inflamsmatory and autoimmune pathways, such
as dominant-negative mutations in the Notch1 NUMB and NUMBL
regulators resulting in the Notch1 regulation enhancement, was
observed in patients with MIS-C [40]. The Notch1 signal transmission
to Tregs induced CD22, thereby causing their mTORC1-dependent
destabilization and systemic inflammmation enhancement.

[t has been proven that in individuals with KD the virus can
play a role of trigger by binding to antibodies and forming the
immune complexes that settle on the blood vessel walls and
cause inflammatory response through binding to Fc receptors
or complement system activation. The genes involved in
antigen production (FCGR2A, the gene encoding lymphoid
tyrosine kinase, and the gene encoding the CD40 ligand)
are responsible for this process. The gene encoding inositol
1,4,5-trisphosphate  3-kinase C (ITPKC) regulating cell
activation is responsible for cellular response associated with
KD. Similar mechanisms can underly the MIS-C pathogenesis
[41]. The research team [42] analyzed three groups of patients
(a total of 20 individuals) in order to reveal the differences and
clarify the disease pathogenetic features: individuals with MIS-C
(n =6), mild and severe COVID-19 (n =5 and n =9, respectively).
The authors determined the cytokine profiles (IFNy, IL10, IL6,
IL8, and TNFa) and the levels of soluble complement complex
C5b-9, they also assessed the abundance of schizocytes in
peripheral blood smears considering clinical data. The analysis
showed that the total of TNFa and IL10 levels was significantly
higher in patients with MIS-C than in patients with severe
CQOVID-19. The elevated levels of these cytokines are indirect
evidence of impaired innate immunity. In the discussion section
the authors note that moderate increase in the levels of IL1,
IL2, and IL6 is observed in individuals with KD. However, TNFa
levels are likely to play a key role in pathogenesis of both MIS-C
and KD. The levels of soluble complement complex C5b-
9 were significantly higher in children with severe COVID-19,
slightly lower in patients with MIS-C, and within normal range
in patients with mild COVID-19. Schizocytes were found
in peripheral blood smears in 67% of individuals with mild
COVID-19, 80% of patients with severe COVID-19, and 100%
of patients with MIS-C. Elevated levels of soluble complement
complex C5b-9 are indicative of the presence of blood vessel
damage in the MIS-C pathogenesis [42].
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Cytokines and chemokines play a vitally important role in
initiation, prolongation and suppression of immune response
to any infection, including COVID-19. Studies have revealed
elevated blood levels of IL6 in patients with severe MIS-C,
however, the values did not exceed that observed in children
with sepsis. In addition to IL1 and IL8, the levels of which
are slightly elevated in MIS-C relative to KD, a significantly
increased production of TNFa, IFNy, and IL10 relative to KD
is observed in individuals with MIS-C. The IL17 inflammatory
mediator plays a more prominent role in pathogenesis of KD
than that of MIS-C. It is important to note that the cytokine and
chemokine levels can vary considerably between the studies
involving various ratios of age cohorts, sample collection terms
and diagnostic methods [43-47].

It is well-known that the increase in the levels of
autoantibodies is typical for various autoimmune and
inflammatory disorders, it also occurs in response to
some viral infections. Studies revealed elevated levels of
autoantibodies in patients with MIS-C [48]. Three autoantigens
were identified as ones associated with MIS-C: UBESA, ECET1,
and RBM38. Another eight autoantigens were earlier reported in
individuals with other disorders (ATP4A, TROVEZ2 of two types,
KLHL12, FAM84A, HK1, MAOA, and CTDP1). The authors
have found tissue-specific autoantigens in such organs, as the
gut, heart, endothelium, and skeletal muscles, which explains
clinical symptoms from these organs in MIS-C.

Cardiovascular system is a major target organ in MIS-C.
Heart disorders in the form of valvulitis, coronary artery
dilation and aneurysms, myocardial dysfunction, and fulminant
myocarditis are observed in patients. The researchers make
various assumptions to explain the rate of cardiac disorders.
Thus, myocardial damage is most likely to result from binding
of the virus to the ACE-2 receptors found on endothelial cells
of arteries and veins and direct infection of cardiomyocytes
by the virus [49-51]. Furthermore, the release of inflammatory
cytokines also contributes to the vascular matrix disruption
and loss of blood vessel structural integrity, thereby leading
to coronary artery dilation and aneurysm formation [43].
Pathological examination of autopsy samples from patients
with MIS-C confirms the presence of inflammatory infiltration
in the myocardium and demonstrates high viral load in the
patients’ cardiac muscle [52, 53]. The research team assessed
the results of heart MRl in four patients with MIS-C and revealed
diffuse myocardial edema with no signs of replacement fibrosis
or focal necrosis [54].

Vaccination against COVID-19 and MIS-C

Great attention is paid to the probability of developing MIS-C
after vaccination against COVID-19 due to the emergence
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