ORIGINAL RESEARCH

Justification of the possible directions of pathogenetic therapy of a new coronavirus infection

Lobzin YuV1, Ivanov MB2, Shustov EB2, Rejniuk VL2, Fomichev AV2, Sosyukin AE2, Litvincev BS2
About authors

1 Pediatric Research and Clinical Center for Infectious Diseases of FMBA, Saint Petersburg, Russia

2 Institute toxicology of the FMBA, Saint Petersburg, Russia

Received: 2020-06-19 Accepted: 2020-07-17 Published online: 2020-07-26
|
  1. Ge H., Wang X., Yuan X., Xiao G., Wang Ch., Deng T., Yuan Q., Xiao X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis. 2020:1-9 Accessed March 20, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154215/
  2. Ahn D., Shin H., Kim M., Lee S., Kim H., Myoung J., Kim B., Kim S. Current status of epidemiology, diagnosis, therapeutics and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol. 2020;30(3):313-324. Accessed March 20, 2020. https://doi.org/10.4014/jmb.2003.03011
  3. Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19). J. Autoimmun. 2020;109. Accessed February 26, 2020. https://doi.org/10.1016/j.jaut.2020.102433
  4. Gorenkov D.V., Khantimirova L.M., SHevtcov V.A., Rukavishnikov A.V., Merkulov V.A., Olefir Yu.V. An outbreak of a new infectious disease COVID-19: β-coronaviruses as a threat to global healthcare. Profilaktika, diagnostika, lechenie. 2020;20(1):6-20. (in Russian)
  5. Zhmerenetsky K.V., Sazonova E.N., Voronina N.V., Tomilka G.S., Senkevich O.A., Gorokhovsky V.S., Dyachenko S.V., Koltsov I.P., Kutsiy M.B. COVID-19: scientific facts only. Dal'nevostochnyj medicinskij zhurnal. 2020;1:5-22.
  6. Priputnevich T.V., Gordeev A.B., Lyubasovskaya L.A., SHabanova N.E. The new coronavirus SARS-CoV-2 and pregnancy: a literature review. Akusherstvo i ginekologiya. 2020;5:6-12.
  7. Dubei M.J., Grosh R., Chatterjee S., Biswas P., Chatterjee S., Dubei S. COVID-19 and addiction. Diabetes Metab. Syndr. 2020;14(5):817-823. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7282772/
  8. Patanavanich R., Glantz S.A. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob. Res. 2020. Accessed May 13, 2020. https://doi.org/10.1101/2020.04.13.20063669
  9. Chick J. Alcohol and COVID-19. Alcohol and Alcoholism. 2020. Accessed May 13. https://doi.org/10.1093/alcalc/agaa039
  10. Korostovceva L.S., Rotar' O.P., Konradi A.O. COVID-19: what are the risks of patients with hypertension? Arterial'naya gipertenziya. 2020;26(2):124-132. (in Russian)
  11. Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 7 from June 03, 2020 [archive]. The link is active on 15.06.2020. https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/origi-nal/03062020_%D0%9CR_COVID-19_v7.pdf
  12. Fantini J., Di Scala C., Chahinian H., Yahi N. Structural and molecular modeling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int. J. Antimicrob. Agents. 2020;55(5). Accessed May. https://doi:10.1016/j.ijantimicag.2020.105960
  13. Lauer S.A., Grantz K.N., Bi O., Jones F.K., Zheng Q., Meredith H.R., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172(9):577-582. Accessed May 5, 2020. https://www.acpjournals.org/doi/10.7326/M20-0504
  14. Yan R., Zhang Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-1448. Accessed March 27. https://science.sciencemag.org/content/367/6485/1444
  15. Hou Y., Peng C., Yu M., Li Y., Wang L/F., Shi Z. Angiotensin-converting enzyme 2 (ACE2) proteins og different bat species confer variable susceptibility to SARS-CoV entry. Arch.Virol. 2010;155(10):1563-1569. Accessed June 22, 2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086629/
  16. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14(2):185-192. Accessed March 12, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088738/
  17. Baklaushev V.P., Kulemzin S.V., Gorchakov A.A., Lesnyak V.N., Yusubalieva G.M., Sotnikova A.G. COVID-19. Aetiology, pathogenesis, diagnosis and treatment. Klinicheskaya praktika. 2020;11(1):7-20. (in Russian)
  18. Miller J.K., Whittaker G.R. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3-8. Accessed December 21, 2017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112017/
  19. Bradding P., Richardson M., Hinks T.S.C., Howarth P.H., Choy D.F., Arron J.R., Wenzel S.E., Siddiqui S. ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma-implications for COVID-19. J. Allergy Clin. Immunol. 2020;S0091-6749(20)20430-2. Accessed May 22, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7243787/
  20. Kanekura T., Chen X., Kanzaki T. Basigin (CD147) is expressed on melanoma cells and induced tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int. J. Cancer. 2002;99(4)520-528. Accessed June 1, 2002. https://onlinelibrary.wiley.com/doi/full/10.1002/ijc.10390?sid=nlm%3Apubmed
  21. Vankadary N., Wilce J.A. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020;9(1):601-604. Accessed March 17, 2020. https://pubmed.ncbi.nlm.nih.gov/32178593/
  22. Raj V.S., Mou H., Smits S.L., Dekkers D.H., Müller M.A., Dijkman R., Muth D., Demmers J.A., Zaki A., Foucher R.A., Thiel V., Drosten C., Rottier P.J., Osterhaus A.D., Bosch B.J., Haagmans B.L. Dipeptidyl peptidase 4 is a functional receptor receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251-254. Accessed March 14, 2013. https://pubmed.ncbi.nlm.nih.gov/23486063/
  23. Maggi E., Canonica C.W., Moretta L. COVID-19: unanswered questions on immune response and pathogenesis. J. Allergy Clin. Immunol. 2020;146(1):18-22. Published online May 8, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7205667/
  24. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res. 2020;1-4. Accepted February 27, 2020. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228359/pdf/DDR-9999-na.pdf
  25. Lei C., Fu W., Qian K., Li T., Zhang S., Ding M., Hu S. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. 2020. Posted February 3, 2020. https://www.biorxiv.org/content/10.1101/2020.02.01.929976v2.full.pdf
  26. Samorodskaya I.V., Klyuchnikov I.V. Problems of diagnosis and treatment of COVID-19 on a clinical example. Vrach. 2020;31(4):19-25. (in Russian)
  27. Speranskaya A.A. Radiological signs of a new coronavirus infection COVID-19. Luchevaya diagnostika i terapiya. 2020;1(11):18-25. (in Russian)
  28. New coronavirus infection (COVID-19): etiology, epidemiology, clinic, diagnosis, treatment and prevention. M.:FMBA; 2020.
  29. Belotserkovskaia Y.G., Romanovskikh A.G., Smirnov I.P. COVID-19: a respiratory infection caused by new coronavirus: new data on epidemiology, clinical course, and patients management. Consilium medicum. 2020;22(3):12-20. (in Russian)
  30. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil. Med. Res. 2020;7(1):11. Accessed March 13, 2020. https://pubmed.ncbi.nlm.nih.gov/32169119/
  31. Polunina E.A., Belyakova I.S., YAkushev R.B. Oxidative stress in acute and chronic pathology of the bronchopulmonary system. Novaya nauka: strategii i vektory razvitiya. 2016;4-3(76):40-43. (in Russian)
  32. Stavtseva S.N., Nikolaeva E.A., Sukhorukov V.S. Oxidative stress and mitochondrial dysfunction in the pathogenesis of Down’s disease. Rossijskij vestnik perinatologii i pediatrii. 2014;3:39-42. (in Russian)
  33. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the “Cytokine Storm” in COVID-19. Journal of Infection. 2020. Accepted March 24, 2020. https://doi.org/10.1016/j.jinf.2020.03/037
  34. Fisenko V.P., Chickova N.V. Current COVID-19 pandemic and pharmacological agents. Eksperimental'naya i klinicheskaya farmakologiya.2020;83(4):43-44. (in Russian)
  35. Romanov B.K. Coronavirus disease COVID-2019. Bezopasnost i risk farmakoterapii. 2020;8(1):3-8. (in Russian)
  36. Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., Jammal T.El., Walzer T., François B., Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 2020;19(7). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196557/
  37. Treatment Protocol COVID-19 medical center of Moscow state University [archive]. The link is active on 16.06.2020.http://mc.msu.ru/protokol-mnoc.pdf
  38. Recovery trial statement. Statement from the chief investigators of the randomised evaluation of COVID-19 therapy (recovery) trial on hydroxychloroquine. (5 June 2020). https://www.recoverytrial.net/files/hcq-recovery-statement-050620-final-002.pdf
  39. Suhorukov V.P., Ragimov A.A., Pushkin S.YU., Maslennikov I.A., Bondar' O.G.Perfluorane is a perfluorocarbon blood substitute with a gas transport function.М.: Moskovskaya medicinskaya akademiya im. I.M. Sechenova; 2008. (in Russian)
  40. Usenko L.V., Tsarev A.V. Perfluorane: current realities and prospects. Obshchaya reanimatologiya. 2007;3(1):5-7. (in Russian)
  41. Mel’nikova Yu.S., Makarova T.P. Endothelian dysfunction as the key link jf chronic diseases pathogenesis. Kazanskij medicinskij zhurnal. 2015;96(4):659-665. (in Russian)
  42. Dysfunction of the endothelium. Causes, mechanisms, pharmacological correction. Pod red. Petrishcheva N.N. SPb.: Izdatel'stvo SPBGMU; 2003.
  43. Baltaeva L.I., Pospelova J.S. Endothelian dysfunction is participation of the multiple sclerosis. Mezhdunarodnyj studencheskij vestnik. 2018;4:201-203. (in Russian)
  44. Recommendations for the diagnosis and intensive therapy of disseminated intravascular coagulation syndrome in viral lung disease. Pod red. Vorobyova P.A., Elmykova V.A. M.: Moskovskoye gorodskoye obshchestvo terapevtov, 2020.
  45. Dremina N.N., Shurigin M.G., Shurigina I.A. Endothelins under normal and pathological conditions. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2016;10(2):210-214. (in Russian)
  46. Rational pharmacotherapy in Hepatology: a guide for physicians. Pod red. Buerova A.O. M.: Littera; 2009.