ORIGINAL RESEARCH

Modern approaches to assessment of minimal residual disease in multiple myeloma (plasma cell myeloma) cases

Glazanova TV, Shilova ER, Bessmeltsev SS
About authors

Russian Research Institute of Hematology and Transfusiology of the Federal Medical-Biological Agency, Saint Petersburg, Russia

Correspondence should be addressed: Tatyana V. Glazanova
2nd Sovetskaya str., 16, St. Petersburg, 191023, Russia; ur.xednay@avonazalg-anaytat

About paper

Author contributions: TV Glazanova — concept development, collection and analysis of literature; ER Shilova — article editing, authoring; SS Bessmeltsev — article editing, approval of its final version.

Received: 2023-11-16 Accepted: 2023-12-20 Published online: 2023-12-31
|
  1. Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood. 2022; 140 (11): 1229–53. DOI: 10.1182/ blood.2022015851.
  2. Paiva B, Chandia M, Puig N, Vidriales MB, Perez JJ, LopezCorral L, et al. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapsed multiple myeloma. Haematologica. 2015; 100 (2): e53–e55. DOI: 10.3324/haematol.2014.115162.
  3. Bertamini L, D'Agostino M, Gay F. MRD Assessment in Multiple Myeloma: Progress and Challenges. Curr Hematol Malig Rep. 2021; 16 (2): 162–71. DOI: 10.1007/s11899-021-00633-5.
  4. Ding H, Xu J, Lin Z, Huang J, F Wang F, Yang Y, et al. Minimal residual disease in multiple myeloma: current status. Biomark Res. 2021; 9 (75): 1–10. DOI: 10.1186/s40364-021-00328-2.
  5. Martinez-Lopez J, Lahuerta JJ, Pepin F, González M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014; 123 (20): 3073–9. DOI: 10.1182/blood-2014-01-550020.
  6. Rawstron AC, Gregory WM, De Tute RM, Davies FE, Bell SE, Drayson MT, et al. Minimal Residual Disease in Myeloma by Flow Cytometry: Independent Prediction of Survival Benefit per Log Reduction. Blood. 2015; 125: 1932–5. DOI: 10.1182/ blood-2014-07-590166.
  7. Kumar S, Paiva B, Anderson K, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. The Lancet Oncology. 2016; 17 (8): e328–e346. DOI: 10.1016/S1470-2045(16)30206-6.
  8. Golenkov AK, Mitina TA, Klinushkina EF, Kataeva EV, Chuksina YuYu, Chernykh YuB, et al. Correlation of immunoglobulin free light chains with biochemical and immunochemical parameters of blood in patients with multiple myeloma. Bulletin of hematology. 2023; 1 (19): 23–8. Russian.
  9. Singhal S, Vickrey E, Krishnamurthy J, Singh V, Allen S, Mehta J. The relationship between the serum free light chain assay and serum immunofixation electrophoresis, and the definition of concordant and discordant free light chain ratios. Blood. 2009; 1 (114): 38–9.
  10. Durie BG, Harousseau JL, Miguel Durie JS, Harousseau BG, Miguel JL, Bladé JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006; 9 (20): 1467–73. DOI: 10.1038/sj.leu.2404284.
  11. Kyrtsonis MC, Vassilakopoulos TP, Kafasi N, Sachanas S, Tzenou T, Papadogiannis A, et al. Prognostic value of serum free light chain ratio at diagnosis in multiple myeloma. Br J Haematol. 2007; 3 (137): 240–3. DOI: 10.1111/j.1365-2141.2007.06561.x.
  12. Van Rhee F, Bolejack V, Hollmig K, Pineda-Roman M, Anaissie E, Epstein J, et al. High serum-free light chain levels and their rapid reduction in response to therapy define an aggressive multiple myeloma subtype with poor prognosis. Blood. 2007; 110 (3): 827–32. DOI: 10.1182/blood-2007-01-067728.
  13. Mead GP, Drayson MT. Sensitivity of serum free light chain measurement of residual disease in multiple myeloma patients. 2009; 8 (114): 1717.
  14. Giarin MM, Giaccone L, Sorasio R, Sfiligoi C, Amoroso B, Cavallo F, et al. Serum free light chain ratio, total kappa/lambda ratio, and immunofixation results are not prognostic factors after stem cell transplantation for newly diagnosed multiple myeloma. Clin Chem. 2009; 55 (8): 1510–6. DOI:10.1373/clinchem.2009.124370.
  15. Kapoor P, Kumar SK, Dispenzieri A, Lacy MQ, Buad F, Dingli D, et al. Importance of achieving stringent complete response after autologous stemcell transplantation in multiple myeloma. J Clin Oncol. 2013; 31 (36): 4529–35. DOI:10.1200/JCO.2013.49.0086.
  16. Chee CE, Kumar S, Larson DR, Kyle RA, Dispenzieri A, Gertz MA, et al. The importance of bone marrow examination in determining complete response to therapy in patients with multiple myeloma. Blood. 2009; 13 (114): 2617–8. DOI:10.1182/ blood-2009-01-198788.
  17. De Larrea F, Tovar N, Rozman M, Laura Rosiñol L, Arostegui JI, Cibeiraet MT, et al. Multiple myeloma in serologic complete remission after autologous stem cell transplantation: impact of bone marrow plasma cell assessment by conventional morphology on disease progression. Biol Blood Marrow Transplant. 2011; 17: 1084–7.
  18. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011; 118 (23): 5989–95. DOI: 10.1182/ blood-2011-06-361386.
  19. Reghunathan R, Bi C, Liu SC, Loong KT, Chung TH, Huang G, Chng WJ, et al. Clonogenic multiple myeloma cells have shared stemness signature associated with patient survival. Oncotarget. 2013; 4 (8): 1230–40. DOI: 10.18632/oncotarget.1145.
  20. Zent CS, Wilson CS, Tricot G, Jagannath S, Siegel D, Desikanet KR, et al. Oligoclonal protein bands and Ig isotype switching in multiple myeloma treated with high-dose therapy and hematopoietic cell transplantation. Blood. 1998; 9 (91): 3518–23.
  21. Sachpekidis C, Goldschmidt H, Dimitrakopoulou-Strauss A. Positron Emission Tomography (PET) Radiopharmaceuticals in Multiple Myeloma. Molecules. 2019; 25 (1): 134. DOI: 10.3390/molecules25010134.
  22. Pankratov AE, Zeynalova PA. The role of PET/CT in the diagnosis and response assessment in patients with multiple myeloma. Oncohematology. 2021; 16 (3): 33–9. DOI: 10.17650/1818-8346-2021-16-3-33-39. Russian.
  23. Ghimire K, Rajkumar SV, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, et al. Incidence and survival outcomes of extramedullary myeloma. Blood. 2013; 122 (21): 3141. DOI: 10.1182/blood.V122.21.1696.1696.
  24. Kraeber-Bodеrе F, Jamet B, Bezzi D, Zamagni E, Moreau P, Nanni C. New Developments in Myeloma Treatment and Response Assessment. J Nucl Med. 2023; 64 (9): 1331–43. DOI:10.2967/ jnumed.122.264972.
  25. Van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia. 2007; 21: 604–11.
  26. Bai Y, Wong K, Fung T, Chim C. High applicability of ASO-RQPCR for detection of minimal residual disease in multiple myeloma by entirely patient-specific primers/probes. J Hematol Oncol. 2016; 9 (1): 107. DOI: 10.1016/s1083-8791(00)70006-1.
  27. Ladetto M, Donovan JW, Harig S, Trojan A, Poor C, Schlossnanet R, et al. Real-time polymerase chain reaction of immunoglobulin rearrangements for quantitative evaluation of minimal residual disease in multiple myeloma. Biol Blood Marrow Transplant. 2000; 6: 241–53.
  28. Paiva BN, Gutierrez CL, Rosinol MB, Vidriales MB, Montalban MA, Martinez-Lopez J, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012; 119 (3): 687–91. DOI: 10.1182/blood-2011-07-370460.
  29. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, et al. Minimal residual disease assessed by multiparameter flow cytometry in multiple myeloma: impact on outcome in the Medical Research Council Myeloma IX Study. J Clin Oncol. 2013; 31 (20): 2540–7. DOI: 10.1200/JCO.2012.46.2119.
  30. Kalina T, Flores-Montero J, Lecrevisse Q, Pedreira CE, van der Velden VH, Novakova M, et al. Quality assessment program for EuroFlow protocols: summary results of four-year (2010–2013) quality assurance rounds. Cytometry A. 2015; 87 (2): 145–56. DOI: 10.1002/cyto.a.22581.
  31. Grivtsova LYu, Lunin VV, Semenova AA, et al. Minimal residual disease in plasma cell (multiple) myeloma: flow cytometric approaches. Oncohematology. 2020; 15 (1): 40–50. DOI: 10.17650/1818-8346-2020-15-1-40-50. Russian.
  32. Tolstykh EE, Tupitsyn NN. Key markers for diagnosis of minimal residual disease in multiple myeloma. Russian Journal of Biotherapy. 2022; 21 (1): 42–9. DOI: 10.17650/1726-9784-2022-21-1-42-4. Russian.
  33. Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia. 2015; 29 (10): 2110–3. DOI:10.1038/leu.2015.79.
  34. Raja KR, Kovarova L, Hajek R. Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol. 2010; 149: 334–51.
  35. Stetler-Stevenson M, Paiva B, Stoolman L, Lin P, Jorgensen JL, Orfao A, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry B Clin Cytom. 2015; 90: 26–30. DOI: 10.1002/cyto.b.21249.
  36. Flanders A, Stetler-Stevenson M, Landgren O. Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood. 2013; 122: 1088–89.
  37. Paiva B, Gutierrez NC, Rosinol L, Vidriales MB, Montalbаn MА, Martinez-Lоpez J, et al. High-risk cytogenetics and persistent minimal residual disease by multiparameter flow cytometry predict unsustained complete response after autologous stem cell transplantation in multiple myeloma. Blood. 2012; 119 (3): 687–91. DOI: 10.1182/blood-2011-07-370460.
  38. Solovev MV, Mendeleeva LP, Galtseva IV, Pokrovskaya OS, Firsova MV, Nareyko MV, et al. Znachenie minimal'noy ostatochnoy bolezni posle transplantatsii autologichnykh stvolovykh kletok pri mnozhestvennoy mielome. Russian journal of hematology and transfusiology. 2014; 59 (1): 69. Russian.
  39. Nishihori T, Song J, Shain K. Minimal Residual Disease Assessment in the Context of Multiple Myeloma Treatment. Curr Hematol Malig Rep. 2016; 11: 118–26. DOI: 10.1007/s11899-016-0308-3.
  40. Roschewski M, Stetler-Stevenson M, Yuan C, Mailankody S, Korde N, Landgren O. Minimal residual disease: what are the minimum requirements? J Clin Oncol. 2014; 32 (5): 475–6.
  41. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, GarciaSanchez O, Böttcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017; 31 (10): 2094–103. DOI:10.1038/leu.2017.29.
  42. Bai Y, Orfao A, Chim CS Molecular detection of minimal residual disease in multiple myeloma. Br J Haematol. 2018; 181: 11–26. DOI: 10.1111/bjh.15075.
  43. Medina-Herrera A, Sarasquete ME, Jiménez C, Puig N, GarcíaSanz R. Minimal Residual Disease in Multiple Myeloma: Past, Present, and Future. Cancers (Basel). 2023; 15 (14): 3687. DOI: 10.3390/cancers15143687.
  44. Pacelli P, Raspadori D, Bestoso E, Gozzetti A, Bocchia M. «Friends and foes» of multiple myeloma measurable/minimal residual disease evaluation by next generation flow. Front Oncol. 2022; 12: 1057713. DOI: 10.3389/fonc.2022.1057713.
  45. Khagi Y, Mark TM. Potential role of daratumumab in the treatment of multiple myeloma. Onco Targets Ther. 2014; 7: 1095–100.
  46. San Miguel J, Harousseau JL, Joshua D, Anderson KC. Individualizing treatment of patients with myeloma in the era of novel agents. J Clin Oncol. 2008; 26: 2761–66.
  47. Wirk B, Wingard JR, Moreb JS. Extramedullary disease in plasma cell myeloma: the iceberg phenomenon. Bone Marrow Transplant. 2013; 48 (1): 10–8. DOI: 10.1038/bmt.2012.26.
  48. Puig N, Sarasquete M, Balanzategui A, Martínez J, Paiva B, García H, et al. Critical evaluation of ASO RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia. 2014; 28 (2): 391–7. DOI: 10.1038/leu.2013.217.
  49. Kara IO, Duman BB, Afsar CU. The evaluation of minimal residual disease in multiple myeloma by fluorescent molecular beacons in real time PCR of IgH gene rearrangements and correlation with flow cytometry. J BUON. 2013; 18 (2): 442–7.
  50. Oliva S, Gambella M, Gilestro M, Muccio V, Gay F, Drandi D, et al. Minimal residual disease after transplantation or lenalidomidebased consolidation in myeloma patients: a prospective analysis. Oncotarget. 2017; 8 (4): 5924–35. DOI: 10.18632/ oncotarget.12641.
  51. Korde N, Roschewski M, Zingone A, Kwok M, Manasanch EE, Bhutani M, et al. Treatment with carfi lzomib-lenalidomidedexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 2015; 1 (6): 746–54. DOI: 10.1001/jamaoncol.2015.2010.
  52. Gonsalves WI, Morice WG, Rajkumar V, Gupta V, Timm MM, Dispenzieri A, et al. Quantifi cation of clonal circulating plasma cells in relapsed multiple myeloma. Br J Haematol. 2014; 167 (4): 500–5. DOI: 10.1111/bjh.13067.
  53. Korthals M, Sehnke N, Kronenwett R, Schroeder T, Strapatsas T, Kobbe G, et al. Molecular monitoring of minimal residual disease in the peripheral blood of patients with multiple myeloma. Biol Blood Marrow Transplant. 2013; 19 (7): 1109–15. DOI: 10.1016/j. bbmt.2013.04.025.
  54. Vij R, Mazumder A, Klinger M, O'Dea D, Paasch J, Martin T, et al. Deep sequencing reveals myeloma cells in peripheral blood in majority of multiple myeloma patients. Clin Lymphoma Myeloma Leuk. 2014; 14 (2): 131–19. DOI: 10.1016/j.clml.2013.09.013.
  55. Rustad EH, Coward E, Skytøen ER, Misund K, Holien T, Standal T, et al. Monitoring multiple myeloma by quantification of recurrent mutations in serum. Haematologica. 2017; 102 (7): 1266–72. DOI: 10.3324/haematol.2016.160564.
  56. Kis O, Kaedbey R, Chow S, Danesh A, Dowar M, Li T, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017; 8: 15086. DOI: 10.1038/ncomms15086.
  57. Pawlyn C, Fowkes L, Otero S, Jones JR, Boyd KD, Davies FE, et al. Whole body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia. 2016; 30 (6): 1446–8. DOI: 10.1038/leu.2015.338.
  58. Munshi NC, Avet-Loiseau H, Anderson KC, Neri P, Paiva B, Samur M, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020; 4 (23): 5988–99. DOI: 0.1182/bloodadvances.2020002827.
  59. Guo G, Raje NS, Seifer C, Kloeber J, Isenhart R, Ha G, et al. Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia. 2018; 32 (8): 1838–41. DOI: 10.1038/s41375-018-0115-z.
  60. Ryu D, Kim SJ, Hong Y, Jo A, Kim N, Kim HJ, et al. Alterations in the transcriptional programs of myeloma cells and the microenvironment during extramedullary progression affect proliferation and immune evasion. Clin Cancer Res. 2020; 26 (4): 935–44. DOI: 10.1158/1078-0432.Ccr-19-0694.