REVIEW
Combination of bacteriophages and antibiotics as the most effective therapy against Staphylococcus aureus
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russia
Correspondence should be addressed: Narina K. Abdraimova
Malaya Pirogovskaya, 1a, Moscow, 119435, Russia; moc.liamg@aniranavomiardba
Funding: the work was supported by the Russian Science Foundation grant No. 22-15-00443, https://rscf.ru/project/22-15-00443/
Author contribution: Abdraimova NK — analysis of literature, article authoring and editing, approval of its final version; Shitikov EA — analysis of literature, article authoring and editing, approval of its final version; Gorodnichev RB — article editing, approval of its final version; Kornienko MA — conceptualization, analysis of literature, article authoring and editing, approval of its final version.
- Wagenlehner FME, Dittmar F. Re: global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Eur Urol. 2022; 82 (6): 658.
- Gherardi G. Staphylococcus aureus infection: pathogenesis and antimicrobial resistance. Int J Mol Sci. 2023; 24 (9): 81–82.
- Fishovitz J, Hermoso JA, Chang M., Mobashery S. PenicillinBinding Protein 2a of Methicillin-Resistant Staphylococcus aureus. IUBMB Life. 2014; 66: 572–7.
- McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017; 90: 269–81.
- Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J Bacteriol. 1996; 178: 3246–51.
- Locke JB, Hilgers M, Shaw, KJ. Novel Ribosomal Mutations in Staphylococcus aureus Strains Identified through Selection with the Oxazolidinones Linezolid and Torezolid (TR-700). Antimicrob Agents Chemother. 2009; 53: 5265–74.
- Jensen SO, Lyon BR. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 2009; 4: 565–82.
- Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiot Basel Switz. 2021; 10: 1502.
- Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. Int J Environ Res Public Health. 2021; 18: 7602.
- Tikunova NV, Voroshilova NN, Polygach OA, Morozova VV, Tikunov AY, Kurilshhikov AM, et al. Genetic characteristics and range of antibacterial activity of the bacteriophages, which are a part of manufactured serie of drugs — pyobacteriophage polyvalent purified. Epidemiology and Vaccinal Prevention. 2016; 15 (2 (87)): 93–100. Russian.
- Nikolich MP, Filippov AA. Bacteriophage therapy: developments and directions. Antibiotics. 2020; 9: 135.
- Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol. Ther. 2017; 8: 162–73.
- Kebriaei R, Lev KL, Stamper KC, Lehman SM, Morales S, Rybak MJ. Bacteriophage AB-SA01 Cocktail in Combination with Antibiotics against MRSA-VISA Strain in an In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob Agents Chemother. 2021; 65 (1): e01863-20.
- Abdraimova NK, Kornienko MA, Bespiatykh DA, Kuptsov NS, Gorodnichev RB, Shitikov EA. Combined effects of bacteriophage vB_SauM-515A1 and antibiotics on the Staphylococcus aureus clinical isolates. Bulletin of RSMU. 2022; (5): 23–30. Russian.
- Simon K, Pier W, Krüttgen A, Horz HP. Synergy between Phage Sb-1 and Oxacillin against Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2021; 10 (7): 849.
- Dickey J, Perrot V. Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PloS One. 2019; 14 (1): e0209390.
- Zaytzeff-Jern H, Meleney FL. Studies in bacteriophage VI: The effect of sulfapyridine and sulfanilamide on staphylococci and E. Coli and their respective bacteriophages. J Lab Clin Med. 1941; 26: 1756–67.
- Macneal WJ, Spence MJ, Blevins A. Cure of experimental staphylococcal meningitis. Exp Biol Med. 1942; 50: 176–9.
- Himmelweit F. Combined action of penicillin and phage on staphylococci. Lancet. 1945; 246: 104–5.
- Diallo K, Dublanchet A. A century of clinical use of phages: a literature review. Antibiotics (Basel). 2023; 12 (4): 751.
- Comeau AM, Tétart F, Trojet SN, Prère MF, Krisch HM. PhageAntibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PloS One. 2007; 2 (8): e799.
- Vashisth M, Yashveer S, Anand T, Virmani N, Bera BC, Vaid RK. Antibiotics targeting bacterial protein synthesis reduce the lytic activity of bacteriophages. Virus Res. 2022; 321: 198909.
- Rahman M, Kim S, Kim SM, Seol SY, Kim J. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling. 2011; 27 (10): 1087–93.
- Kumaran D, Taha M, Yi Q, et al. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol. 2018; 9: 127.
- Kirby AE. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One. 2012; 7 (11): e51017.
- Wang L, Tkhilaishvili T, Trampuz A. Adjunctive Use of Phage Sb-1 in Antibiotics Enhances Inhibitory Biofilm Growth Activity versus Rifampin-Resistant Staphylococcus aureus Strains. Antibiotics (Basel). 2020; 9 (11): 749.
- Chhibber S, Kaur T, Sandeep Kaur. Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One. 2013; 8 (2): e56022.
- Prazak J, Iten M, Cameron DR, et al. Bacteriophages Improve Outcomes in Experimental Staphylococcus aureus Ventilatorassociated Pneumonia. Am J Respir Crit Care Med. 2019; 200 (9): 1126–33.
- Save J, Que YA, Entenza JM, Kolenda C, Laurent F, Resch G. Bacteriophages combined with subtherapeutic doses of flucloxacillin act synergistically against Staphylococcus aureus experimental infective endocarditis. J Am Heart Assoc. 2022; 11 (3): e023080.
- Kornienko M, Kuptsov N, Gorodnichev R, et al. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci Rep. 2020; 10 (1): 18612.
- Li X, Hu T, Wei J, et al. Characterization of a Novel Bacteriophage Henu2 and Evaluation of the Synergistic Antibacterial Activity of Phage-Antibiotics. Antibiotics (Basel). 2021; 10 (2): 174.
- Kim M, Jo Y, Hwang YJ, et al. Phage-Antibiotic Synergy via Delayed Lysis. Appl Environ Microbiol. 2018; 84 (22): e02085-18.
- Kebriaei R, Lev K, Morrisette T, Stamper KC, Abdul-Mutakabbir JC, Lehman SM, et al. Bacteriophage-Antibiotic Combination Strategy: an Alternative against Methicillin-Resistant Phenotypes of Staphylococcus aureus. Antimicrob Agents Chemother. 2020; 64 (7): e00461-20.
- Berryhill BA, Huseby DL, McCall IC, Hughes D, Levin BR. Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci USA. 2021; 118 (10): e2008007118.
- Loganathan A, Manohar P, Nachimuthu R. Phage-antibiotic combination: an effective method for eradication of Staphylococcus aureus. bioRxiv. Available from: https://www.biorxiv.org/content/1 0.1101/2023.03.27.534482v2.
- Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol. 2002; 46: 202–56.
- Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011; 2 (5): 445–59.
- Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 2005; 28 (11): 1062–8.
- Oliveira WF, Silva PMS, Silva RCS, et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect. 2018; 98 (2): 111–7.
- Cho OH, Bae IG, Moon SM, Park SY, Kwak YG, Kim BN, et al. Therapeutic outcome of spinal implant infections caused by Staphylococcus aureus: A retrospective observational study. Medicine (Baltimore). 2018; 97 (40): e12629.
- Kaur S, Harjai K, Chhibber S. Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLoS One. 2014; 9 (3): e90411.
- Joo H, Wu SM, Soni I, Wang-Crocker C, Matern T, Beck JP, et al. Phage and Antibiotic Combinations Reduce Staphylococcus aureus in Static and Dynamic Biofilms Grown on an Implant Material. Viruses. 2023; 15 (2): 460.
- Taha M, Arnaud T, Lightly TJ, Peters D, Wang L, Chen W, et al. Combining bacteriophage and vancomycin is efficacious against MRSA biofilm-like aggregates formed in synovial fluid. Front Med (Lausanne). 2023; 10: 1134912.
- Akturk E, Oliveira H, Santos SB, Costa S, Kuyumcu S, Melo LDR, et al. Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics (Basel). 2019; 8 (3): 103.
- Doub JB, Ng VY, Lee M, Chi A, Lee A, Würstle S, et al. Salphage: Salvage Bacteriophage Therapy for Recalcitrant MRSA Prosthetic Joint Infection. Antibiotics (Basel). 2022; 11 (5): 616.
- Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 2013; 95 (2): 117–25.
- Gilbey T, Ho J, Cooley LA, Petrovic Fabijan A, Iredell JR. Adjunctive bacteriophage therapy for prosthetic valve endocarditis due to Staphylococcus aureus. Med J Aust. 2019; 211 (3): 142-143.e1.
- Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant. 2019; 38 (4): 475–6.
- Ramirez-Sanchez C, Gonzales F, Buckley M, Biswas B, Henry M, Deschenes MV, et al. Successful treatment of Staphylococcus aureus prosthetic joint infection with bacteriophage therapy. Viruses. 2021; 13 (6): 1182.