ОБЗОР

Динамика и логика противоэпидемических мер

Ю. В. Раскина1, А. А. Новкунская1, А. А. Барчук1,2
Информация об авторах

1 Европейский университет в Санкт-Петербурге, Санкт-Петербург, Россия

2 Национальный медицинский исследовательский центр онкологии имени Н. Н. Петрова, Санкт-Петербург, Россия

Для корреспонденции: Антон Алексеевич Барчук
ул. Гагаринская, д. 6/1, г. Санкт-Петербург, 191187; ur.bps.ue@kuhcraba

Информация о статье

Вклад авторов: А. А. Барчук, Ю. В. Раскина — идея статьи; Ю. В. Раскина, А. А. Новкунская — подготовка рукописи; Ю. В. Раскина — подготовка рисунков и таблиц. Все авторы принимали равное участие в правках, обсуждении и утверждении окончательной версии статьи.

Статья получена: 07.12.2020 Статья принята к печати: 13.12.2020 Опубликовано online: 19.12.2020
|
  1. WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19-11, March 2020. World Health Organization. Available from: https://www.who.int/dg/speeches/ detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.
  2. WHO. Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza: annex: report of systematic literature reviews. World Health Organization. Available from: https://apps.who.int/iris/handle/10665/329439.
  3. WHO. Calibrating long-term non-pharmaceutical interventions for COVID-19: principles and facilitation tools. Manila: WHO Regional Office for the Western Pacific. Available from: https://apps.who. int/iris/handle/10665/332099.
  4. WHO. Overview of public health and social measures in the context of COVID-19: interim guidance, 18 May 2020. World Health Organization. Available from: https://apps.who.int/iris/ handle/10665/331773.
  5. WHO. Tracking Public Health and Social Measures. A global database of public health and social measures applied during the COVID-19 pandemic. Available from: https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/phsm (2020, accessed 26 July 2020).
  6. Kilbourne ED. Influenza pandemics of the 20th century. Emerging infectious diseases. 2006; 12: 9.
  7. Peiris JM, Tu W, Yen H. A novel H1N1 virus causes the first pandemic of the 21st century. European journal of immunology. 2009; 39: 2946–54.
  8. Mahase E. Coronavirus: covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. BMJ; 368. Epub ahead of print 18 February 2020. DOI: 10.1136/ bmj.m641.
  9. WHO. Pandemic influenza severity assessment (PISA): a WHO guide to assess the severity of influenza in seasonal epidemics and pandemics. World Health Organization, 2017.
  10. WHO. Infection prevention and control during health care for probable or confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection: interim guidance: updated October 2019. World Health Organization, 2019.
  11. He X, Lau EH, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature medicine. 2020; 26: 672–5.
  12. Koo JR, Cook AR, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. The Lancet Infectious Diseases. 2020; 20: 678–88.
  13. European Centre for Disease Prevention and Control. Use of gloves in healthcare and non-healthcare settings in the context of the COVID-19 pandemic. Stockholm: ECDC, 2020.
  14. WHO Public health and social measures (WHO PHSM). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/phsm.
  15. COVID-19 Government Measures Dataset. Available from: https:// www.acaps.org/covid-19-government-measures-dataset.
  16. The Oxford COVID-19 Government Response Tracker (OxCGRT). Available from: https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker.
  17. Hale T, Petherick A, Phillips T, et al. Variation in government responses to COVID-19. Blavatnik school of government working paper; 31.
  18. Lunn PD, Belton CA, Lavin C, et al. Using Behavioral Science to help fight the Coronavirus. Journal of Behavioral Public Administration; 3.
  19. Brooks SK, Webster RK, Smith LE, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. The Lancet. 2020; 395: 10227: P912-920. DOI: 10.1016/S0140- 6736(20)30460-8.
  20. WHO Europe. Considerations in adjusting public health and social measures in the context of COVID-19: interim guidance, 12 May 2020. World Health Organization, 2020.
  21. Oliver N, Lepri B, Sterly H, et al. Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances. 2020; 6: eabc0764.
  22. Jarvis CI, Van Zandvoort K, Gimma A, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC medicine. 2020; 18: 1–10.
  23. Ienca M, Vayena E. On the responsible use of digital data to tackle the COVID-19 pandemic. Nature medicine. 2020; 26: 463–4.
  24. Gupta S, Nguyen TD, Rojas FL, et al. Tracking Public and Private Responses to the COVID-19 Epidemic: Evidence from State and Local Government Actions. Working Paper 27027, National Bureau of Economic Research. Epub ahead of print April 2020. DOI: 10.3386/w27027.
  25. Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science. 2020; 368: eabb6936. DOI: 10.1126/science. abb6936.
  26. Raskar R, Schunemann I, Barbar R, et al. Apps gone rogue: Maintaining personal privacy in an epidemic. arXiv preprint arXiv:200308567.
  27. eHealth Network. Mobile applications to support contact tracing in the EU’s fight against COVID-19: Common EU Toolbox for Member States. Available from: https://ec.europa.eu/health/sites/ health/files/ehealth/docs/covid-19_apps_en.pdf.
  28. Prem K, Liu Y, Russell TW, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health. 2020; 5: e261–e270.
  29. Fenichel EP, Castillo-Chavez C, Ceddia MG, et al. Adaptive human behavior in epidemiological models. Proceedings of the National Academy of Sciences. 2011; 108: 6306–11.
  30. Alvarez FE, Argente D, Lippi F. A simple planning problem for covid-19 lockdown. National Bureau of Economic Research, 2020.
  31. Demirguc-Kunt A, Lokshin M, Torre I. The sooner, the better: The early economic impact of non-pharmaceutical interventions during the COVID-19 pandemic. World Bank Policy Research Working Paper.
  32. Farboodi M, Jarosch G, Shimer R. Internal and external effects of social distancing in a pandemic. National Bureau of Economic Research, 2020.
  33. Jones CJ, Philippon T, Venkateswaran V. Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home. Working Paper 26984, National Bureau of Economic Research. Epub ahead of print April 2020. DOI: 10.3386/w26984.
  34. Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020; 1–5.
  35. Berger DW, Herkenhoff KF, Mongey S. An SEIR infectious disease model with testing and conditional quarantine. National Bureau of Economic Research, 2020.
  36. Brotherhood L, Kircher P, Santos C, et al. An Economic Model of the Covid-19 Epidemic: The Importance of Testing and Age- Specific Policies. SSRN Scholarly Paper ID 3618840, Rochester, NY: Social Science Research Network, 2020. Available from: https://papers.ssrn.com/abstract=3618840.
  37. Eichenbaum MS, Rebelo S, Trabandt M. The Macroeconomics of Testing and Quarantining. National Bureau of Economic Research, 2020.
  38. Acemoglu D, Chernozhukov V, Werning I, et al. A multi-risk SIR model with optimally targeted lockdown. National Bureau of Economic Research, 2020.
  39. Baqaee D, Farhi E, Mina MJ, et al. Reopening Scenarios. Working Paper 27244, National Bureau of Economic Research. Epub ahead of print May 2020. DOI: 10.3386/w27244.
  40. Glover A, Heathcote J, Krueger D, et al. Health versus wealth: On the distributional effects of controlling a pandemic. National Bureau of Economic Research, 2020.