ORIGINAL RESEARCH

Еvaluation of antitumor activity of some 4-aminopiperidine derivatives — low molecular weight Hsp70 inhibitors — on transplantable mouse tumors

Aldobaev VN1, Mikhina LV1, Present MA2
About authors

1 Research Centre for Toxicology and Hygienic Regulation of Biopreparations of FMBA, Serpukhov, Russia

2 Zelinsky Institute of Organic Chemistry, Moscow, Russia

Correspondence should be addressed: Vladimir N. Aldobaev
Lenina, 102A, pos. Bolshevik, Moscow oblast,142283; ur.oibcixot@veabodla

About paper

Funding: the study was carried out under the State Assignment for FMBA № 22.001.18.800.

Author contribution: Aldobaev VN planned the experiment, summarized its results and wrote this manuscript; Mikhina LV carried out the experiment in animal models; Present MA synthesized the tested compounds.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Research Centre for Toxicology and Hygienic Regulation of Biopreparations (Protocol № 695 dated November 12, 2019). Housing conditions met the requirements of Sanitary Regulations 2.2.1.3218-14 (Sanitary and Epidemiological Requirements for Design, Equipment and Maintenance of Vivarium Facilities) and the guidelines provided in the Guide for Care and Use of Laboratory Animals (ILAR publication, 1996, National Academy Press, USA).

Received: 2021-02-13 Accepted: 2021-03-12 Published online: 2021-03-21
|
  1. Kitano H. Cancer robustness: tumour tactics. Nature. 2003; 426: 125.
  2. Taldone T, Kang Y, Patel H, Patel M, Patel P. Heat Shock Protein 70 Inhibitors. 2,5′-Thiodipyrimidines, 5-(Phenylthio)pyrimidines, 2-(Pyridin-3-ylthio)pyrimidines, and 3-(Phenylthio)pyridines as Reversible Binders to an Allosteric Site on Heat Shock Protein 70. J Med Chem. 2014; 57: 1208–24.
  3. Kang Y, Taldone T, Patel H, Patel P. Heat Shock Protein 70 Inhibitors. 2,5′-Thiodipyrimidine and 5-(Phenylthio)pyrimidine Acrylamides as Irreversible Binders to an Allosteric Site on Heat Shock Protein 70. J Med Chem. 2014; 57: 1188–207.
  4. Zeng Y, Cao R, Zhang T, Li S, Zhong W. Design and synthesis of piperidine derivatives as novel human heat shock protein 70 inhibitors for the treatment of drug-resistant tumors. European Journal of Medicinal Chemistry. 2015; 97: 19–31.
  5. Aldobaev VN, Prezent MA, Zavarzin IV. Sintez N,N-dialkil-1-(2-alkiltiopirimidin-4-il)piperidin-4-aminov — potencial'nyh ingibitorov belkov teplovogo shoka. Izvestija Akademii nauk. Serija himicheskaja. 2018; 11: 1–4. Russian.
  6. Mironov AN, redaktory. Rukovodstvo po provedeniju doklinicheskih issledovanij lekarstvennyh sredstv, chast' pervaja. M.: FGBU «NCJeMSP» Minzdravsocrazvitija Rossii, 2012; s. 640–69. Russian.
  7. Aldobaev VN, Maslikov AA, Eremenko LA, Mazanova AA. Raschet kriticheskih harakteristik raspredelenij obshheprinjatyh pokazatelej protivoopuholevoj terapii TRO i UPZh i ocenka ih znachimosti na osnove modelirovanija funkcij plotnosti raspredelenija. Toksikologicheskij vestnik. 2017; 3 (144): 2–7. Russian.
  8. Sofina ZP, redaktor. Pervichnyj otbor protivoopuholevyh preparatov: metodicheskie rekomendacii. M.: MZ SSSR, 1980; s. 11–23. Russian.
  9. Wen W, Liu W, Shao Y, Chen L. VER-155008, a small molecule inhibitor of HSP70 with potent anti-cancer activity on lung cancer cell lines. Exp Biol Med. 2014; 239 (5): 638–45.
  10. Yu B, Yang H, Zhang X, Li H. Visualizing and quantifying the effect of the inhibition of HSP70 on breast cancer cells based on laser scanning microscopy. Technol Cancer Res Treat. 2018; 17: 1–7.
  11. Tian Y, Xu H, Farooq AA, Nie B, Chen X, et al. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother Res. 2018; 23 (7): 1320–31.
  12. Howe MK, Bodoor K, Carlson DA, et al. Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chem Biol. 2014; 21 (12): 1648–59.
  13. Wisén S, Bertelsen EB, Thompson AD, et al. Binding of a small molecule at a protein–protein interface regulates the chaperone activity of hsp70–hsp40. ACS Chem Biol. 2010; 5 (6): 611–22.
  14. Adam C, Baeurle A, Brodsky JL, et al. The HSP70 modulator MAL3-101 inhibits Merkel cell carcinoma. PLoS One. 2014; 9 (4): e92041.
  15. Wright CM, Chovatiya RJ, Jameson NE, et al. Pyrimidinonepeptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg Med Chem. 2008; 16 (6): 3291–301.
  16. Hwang JH, Kim JY, Cha MR, et al. Etoposide-resistant HT-29 human colon carcinoma cells during glucose deprivation are sensitive to piericidin A, a GRP78 down-regulator. J Cell Physiol. 2008; 215 (1): 243–50.
  17. Park HR, Ryoo IJ, Choo SJ, et al. Glucose-deprived HT-29 human colon carcinoma cells are sensitive to verrucosidin as a GRP78 down-regulator. Toxicology. 2007; 229 (3): 253–61.
  18. Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG. Epigallocatechin3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer. 2010; 10 (1): 276.
  19. Ramya T, Surolia N, Surolia A. 15-Deoxyspergualin inhibits eukaryotic protein synthesis through eIF2α phosphorylation. Biochem J. 2007; 401 (2): 411–20.
  20. Koren J, Miyata Y, Kiray J, O'Leary JC, Nguyen L, et al. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance. PLoS One. 2012; 7 (4): e35566.
  21. Colvin TA, Gabai VL, Gong J, et al. Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res. 2014; 74 (17): 4731–40.
  22. Li X, Colvin T, Rauch JN, et al. Validation of the Hsp70-Bag3 protein-protein interaction as a potential therapeutic target in cancer. Mol Cancer Ther. 2015; 14 (3): 642–8.
  23. Tang X, Tan L, Shi K, et al. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharm Sin. B. 2018; 8 (4): 587–601.
  24. Fewell SW, Smith CM, Lyon MA, et al. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem. 2004; 279 (49): 51131–40.
  25. Ermakova SP, Kang BS, Choi BY, et al. (–) — Epigallocatechin gallate overcomes resistance to etoposide-induced cell death bytargeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 2006; 66 (18): 9260–69.
  26. Z-p Y, L-j C, L-y F, Tang M-h, G-l Y, et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res. 2006; 12 (10): 3193–99.
  27. Ko S-K, Kim J, Na DC, et al. A small molecule inhibitor of ATPase activity of HSP70 induces apoptosis and has antitumor activities. Chem Biol. 2015; 22 (3): 391–403.
  28. Park S-H, Baek K-H, Shin I. Subcellular Hsp70 inhibitors promote cancer cell death via different mechanisms. Cell Chem Biol. 2018; 25 (10): 1242–54.
  29. Leu J-J, Pimkina J, Pandey P, Murphy ME, George DL. HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res. 2011; 9 (7): 936–47.
  30. Zhou Y, Ma J, Zhang J, He L, Gong J, Long C. Pifithrin-μ is efficacious against non-small cell lung cancer via inhibition of heat shock protein 70. Oncol Rep. 2017; 37 (1): 313–22.
  31. Wadhwa R, Sugihara T, Yoshida A, et al. Selective toxicity of MKT077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res. 2000; 60 (24): 6818–21.
  32. Yaglom JA, Wang Y, Li A, et al. Cancer cell responses to Hsp70 inhibitor JG-98: Comparison with Hsp90 inhibitors and finding synergistic drug combinations. Sci Rep. 2018; 8 (1): 3010.
  33. Wang AM, Morishima Y, Clapp KM, et al. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J Biol Chem. 2010; 285 (21): 15714–23.