ОБЗОР

Стратегии управления сахарным диабетом у спортсменов

Л. И. Дергачева1, А. А. Деревоедов1, И. Т. Выходец2, А. А. Павлова1, С. А. Парастаев3
Информация об авторах

1 Федеральный научно-клинический центр спортивной медицины и реабилитации Федерального медико-биологического агентства, Москва, Россия

2 Управление спортивной медицины и цифровизации Федерального медико-биологического агентства, Москва, Россия

3 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

Для корреспонденции: Анна Александровна Павлова
ул. Большая Дорогомиловская, д. 5, г. Москва, 121059; moc.liamtoh@avolvap_rd

Информация о статье

Финансирование: исследование выполнено при финансовой поддержке Государственного задания Федерального медико-биологического агентства России № 67.003.20.800.

Вклад авторов: Л. И. Дергачева — существенный вклад в концепцию работы, сбор данных, анализ содержания, написание текста; А. А. Деревоедов, С. А. Парастаев — критический пересмотр содержания, утверждение окончательного варианта статьи; И. Т. Выходец — утверждение окончательного варианта статьи; А. А. Павлова — написание текста, оформление рукописи.

Статья получена: 20.07.2021 Статья принята к печати: 27.08.2021 Опубликовано online: 28.09.2021
|
  1. Solberg SR, Land R, Desay E, Ker D. Physical activity and type 1 diabetes: time for a rewire? J Diabetes Sci Technol. 2015; 9: 609–18.
  2. Kelly D, Hamilton JK, Riddell MC. Blood glucose levels and performance in a sports cAMP for adolescents with type 1 diabetes mellitus: a field study. Int J Pediatr. 2010.
  3. Gomez AM, Gomez C, Aschner P, et al. Effects of performing morning versus afternoon exercise on glycemic control and hypoglycemia frequency in type 1 diabetes patients on sensoraugmented insulin pump therapy. J Diabetes Sci Technol. 2015; 9: 619–24.
  4. Caduff A, Lutz HU, Heinemann L, et al. Dynamics of blood electrolytes in repeated hyper- and/or hypoglycaemic events in patients with type 1 diabetes. Diabetologia. 2011; 54: 2678–89.
  5. Colberg SR, Yardley JE, Riddell MC, et al. Physical activity/ exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016; 39 (11): 2065–79.
  6. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012; 590: 1077–84.
  7. Terada T, Wilson BJ, Myette-Co´te´E, et al. Targeting specific interstitial glycemic parameters with high-intensity interval exercise and fasted-state exercise in type 2 diabetes. Metabolism. 2016; 65: 599–608.
  8. Iscoe KE, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus. Diabet Med. 2011; 28: 824–32.
  9. Yardley JE, Kenny GP, Perkins BA, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013; 36 (3): 537–42.
  10. Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012; 11: 209–16.
  11. Turner D, Luzio S, Gray BJ, et al. Impact of single and multiple sets of resistance exercise in type 1 diabetes. Scand. J Med Sci Sports. 2015; 25: 99–109.
  12. Yardley JE, Kenny GP, Perkins BA, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012; 35: 669–75.
  13. Turner D, Luzio S, Gray BJ, et al. Algorithm that delivers an individualized rapid-acting insulin dose after morning resistance exercise counters postexercise hyperglycemia in people with Type 1 diabetes. Diabet. Med. 2016; 33: 506–10.
  14. Chtourou H, Souissi N. The effect of training at a specific time of day: a review. J Strength Cond Res. 2012; 26: 1984–2005.
  15. Murillo S, Brugnara L, Novials A. One year follow-up in a group of halfmarathon runners with type-1 diabetes treated with insulin analogues. J Sports Med Phys Fitness. 2010; 50: 506–10.
  16. Riddell MC, Milliken J. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucosemonitoring and a new carbohydrate intake algorithm: an observational field study. Diabetes Technol Ther. 2011; 13: 819–25.
  17. Francescato MP, Stel G, Stenner E, Geat M. Prolonged exercise in type 1 diabetes: performance of a customizable algorithm to estimate the carbohydrate supplements to minimize glycemic imbalances. PLoS One. 2015; 10: e0125220.
  18. Adolfsson P, Mattsson S, Jendle J. Evaluation of glucose control when a new strategy of increased carbohydrate supply is implemented during prolonged physical exercise in type 1 diabetes. Eur J Appl Physiol. 2015; 115: 2599–607.
  19. Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol. 2012; 590: 1069–76.
  20. West DJ, Stephens JW, Bain SC, et al. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus. J Sports Sci. 2011; 29: 279–89.
  21. Bracken RM, West DJ, Stephens JW, et al. Impact of pre-exercise rapidacting insulin reductions on ketogenesis following running in type 1 diabetes. Diabet Med. 2011; 28: 218–22.
  22. Franc S, Daoudi A, Pochat A, et al. Insulin-based strategies to prevent hypoglycaemia during and after exercise in adult patients with type 1 diabetes on pump therapy: the DIABRASPORT randomized study. Diabetes Obes. Metab. 2015; 17: 1150–57.
  23. West DJ, Morton RD, Bain SC, et al. Blood glucose responses to reductions in pre-exercise rapid-acting insulin for 24 h after running in individuals with type 1 diabetes. J Sports Sci. 2010; 28: 781–88.
  24. Campbell MD, Walker M, Bracken RM, et al. Insulin therapy and dietary adjustments to normalize glycemia and prevent nocturnal hypoglycemia after evening exercise in type 1 diabetes: a randomized controlled trial. BMJ Open Diabetes Res Care. 2015; 3: e000085.
  25. Taplin CE, Cobry E, Messer L, et al. Preventing post-exercise nocturnal hypoglycemia in children with type 1 diabetes. J Pediatr. 2010; 157: 784–88. e781.
  26. Garg SK, Brazg RL, Bailey TS, et al. Hypoglycemia begets hypoglycemia: the order effect in the ASPIRE in-clinic study. Diabetes Technol Ther. 2014; 16: 125–30.
  27. Freckmann G, Pleus S, Haug C, et al. Increasing local blood flow by warming the application site: beneficial effects on postprandial glycemic excursions. J Diabetes Sci Technol. 2012; 6: 780–5.
  28. Yardley J, Mollard R, Macintosh A, et al. Vigorous intensity exercise for glycemic control in patients with type 1 diabetes. Can J Diab. 2013; 37: 427–32.
  29. Campbell MD, Walker M, Trenell MI, et al. Metabolic implications when employing heavy pre- and post-exercise rapid-acting insulin reductions to prevent hypoglycaemia in type 1 diabetes patients: a randomised clinical trial. PLoS One. 2014; 9 (5); e97143.
  30. Moser O, et al. Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin. PloS Оne. 2015; 10 (8): e0136489.
  31. Shetty VB, Fournier PA, Davey RJ, et al. Effect of exercise intensity on glucose requirements to maintain euglycaemia during exercise in type 1 diabetes. J Clin Endocrinol Metab. 2016; 101 (3): 972– 80.
  32. Дедов И. И., Шестакова М. В., Майоров А. Ю. Алгоритмы специализированной медицинской помощи больным сахарным диабетом: клинические рекомендации. 2019; 22 (1S1): 1–144.
  33. World Anti-Doping Agency. International standard for therapeutic use exemptions (ISTUE) [cited 2021 Jul 14]. Available from: https:// www.wada-ama.org/en/resources/therapeutic-use-exemptiontue/international-standard-for-therapeutic-use-exemptions-istue.
  34. Медицинская информация для поддержки решений Комитетов по ТИ. Сахарный диабет [cited 2021 Jul 14]. Доступно по ссылке: //rusada.ru/upload/iblock/688/Диабет%20версия%20 4.2%20февраль%202020.pdf.
  35. Пьянкова Е. Ю., Аншакова Л. А., Пьянков И.А. и др. Современные технологии в управлении сахарным диабетом — непрерывное мониторирование глюкозы и помповая инсулинотерапия. Здравоохранение Дальнего Востока. 2021; 1: 50–55.
  36. Hásková A, Radovnická L, Petruželková L, Parkin CG, Grunberger G, Horová E, et al. Is superior to flash glucose monitoring for glucose control in type 1 diabetes: the CORRIDA randomized controlled trial. Diabetes Care. 2020 Nov; 43 (11): 2744–50.
  37. Древаль А. В., Шестакова Т. П., Манукян А. А., Брежнева О. Г. Индивидуализированный статистический анализ массива данных непрерывного мониторирования глюкозы. Альманах клинической медицины. 2021; 48 (7): 459–68.
  38. Nimri R, Nir J, Phillip M. Insulin pump therapy. American journal of therapeutics. 2020; 27 (1): e30–e41.
  39. The Food and Drug Administration. What is the pancreas? What is an artificial pancreas device system? fda.gov [cited 2021 Jul 14]. Available from: https://www.fda.gov/medical-devices/ artificial-pancreas-device-system/what-pancreas-what-artificialpancreas-device-system.
  40. Сорокин Д. Ю., Лаптев Д. Н. Некоммерческие системы введения инсулина в замкнутом контуре. Consilium Medicum. 2020; 22 (4): 27–30.
  41. Kenny GP, Stapleton JM, Yardley JE, et al. Older adults with type 2 diabetes store more heat during exercise. Med Sci Sports Exerc. 2013; 45: 1906–14.
  42. Carter MR, McGinn R, Barrera-Ramirez J, et al. Impairments in local heat loss in type 1 diabetes during exercise in the heat. Med Sci Sports Exerc. 2014; 46: 2224–33.
  43. Fritschi C, Park H, Richardson A, et al. Association between daily time spent in sedentary behavior and duration of hyperglycemia in type 2 diabetes. Biol Res Nurs. 2015.
  44. Dempsey PC, Larsen RN, Sethi P, et al. Benefits for type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care. 2016; 39: 964–72.
  45. Абдирамашева К. С. Глюкокортикоиды и развитие сахарного диабета. Theoretical Applied Science. 2019; 4: 15–19.
  46. Бухтин О. В., Рябцев А. С. Оценка влияния психотропных препаратов на развитие эндокринной патологии. Возможности ее профилактики. В сборнике: Современные вопросы морфологии эндокринной системы. Материалы IV межрегиональной научно-практической конференции студентов, аспирантов и молодых ученых. Под редакцией О.Ю. Патюченко, А.А. Созыкина, М.А. Затолокиной, Г.Н. Суворовой, М.Н. Дмитриева. Казань: Бук, 2020; с. 23–29.
  47. Маклакова А. С., Маслова М. В., Граф А. В., Соколова Н. А. Вегетативная нервная система в норме и при патологии. Медиаторы и котрансмиттер. М.: Товарищество научных изданий КМК, 2020; 147 с.
  48. FDA revises label of diabetes drug canagliflozin (Invokana, Invokamet) to include updates on bone fracture risk and new information on decreased bone mineral density. 2015 [3/1/16]. Data summary. Available from: http://www.fda.gov/Drugs/ DrugSafety/ucm461449.htm.
  49. Столов С. В. Инактивация ренин-ангиотензин-альдостероновой системы. Какой класс препаратов предпочесть? Евразийский кардиологический журнал. 2020; 4: 64–78.
  50. Недогода С. В. Диуретики при артериальной гипертензии в свете новых клинических рекомендаций и метаанализов. Российский кардиологический журнал. 2021; 3: 91–94.