ORIGINAL RESEARCH
Studying visual gnosis through EEG microstate analysis
1 Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia
2 Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, Moscow, Russia
Correspondence should be addressed: Sergey A. Gulyaev
Ostrovitianova, 1, str, 10, Moscow, Russia; moc.liamg@37veaylug.s
Compliance with ethical standards: the study was approved by the Ethics Committee of the Federal Center for Brain and Neurotechnologies of FMBA (protocol № 148-1 dated June 15, 2021) and carried out in accordance with the principles of biomedical ethics set out in the Declaration of Helsinki (version issued in 1964 and the next updated versions). The informed consent was submitted by all study participants.
- Pearce JMS. Lord Adrian, MD, PRS, OM. Eur Neurol. 2018; 79 (1–2): 64-67. Available from: https://doi.org/ 10.1159/000485615.
- Qi G, Zhao S, Ceder AA, Guan W, Yan X. Wielding and evaluating the removal composition of common artefacts in EEG signals for driving behaviour analysis. Accid Anal Prev. 2021; 159: 106223. Available from: https://doi.org/ 10.1016/j.aap.2021.106223.
- Bigdely-Shamlo N, Touryan J, Ojeda A, Kothe C, Mullen T, Robbins K. Automated EEG mega-analysis I: Spectral and amplitude characteristics across studies. Neuroimage. 2020; 207: 116361. Available from: https://doi.org/ 10.1016/j. neuroimage.2019.116361.
- Serra LL, Serra C. Advances in evoked potential recording. A historical review. Acta Neurol (Napoli). 1990; 12 (6): 429–39. PMID: 2080721.
- Kulaichev AP. Komp'yuternaya elektrofiziologiya i funkcional'naya diagnostika. M.:INFRA-M, 2007; s. 178-230. Available from: http://protein.bio.msu.ru/~akula/anEEG/ AnEEG.htm. Russian.
- Dittman Z, Munia TTK, Aviyente S. Graph Theoretic Analysis of Multilayer EEG Connectivity Networks. Annu Int Conf IEEE Eng Med Biol Soc. 2021; 2021: 475–9. Available from: https://doi.org/ 10.1109/EMBC46164.2021.9629514.
- Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995; 42 (7): 658–65. Available from: https://doi.org/10.1109/10.391164.
- Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B. Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil. 2008; 5: 25. Available from: https://doi.org/ 10.1186/1743-0003-5-25.
- Hecker L, Rupprecht R, Tebartz Van Elst L, Kornmeier J. ConvDip: A Convolutional Neural Network for Better EEG Source Imaging. Front Neurosci. 2021; 15: 569918. Available from: https://doi.org/ 10.3389/fnins.2021.569918.
- Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol. 1998; 29 (1): 1–11. Available from: https://doi.org/10.1016/s0167-8760(97)00098-6.
- Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995; 42 (7): 658–65. Available from: https://doi.org/10.1109/10.391164.
- Mishra A, Englitz B, Cohen MX. EEG microstates as a continuous phenomenon. Neuroimage. 2020; 208: 116454. Available from: https://doi.org/ 10.1016/j.neuroimage.2019.116454.
- Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage. 2018; 180 (Pt B): 577–93. Available from: https:// doi.org/ 10.1016/j.neuroimage.2017.11.062.
- Sun Q, Zhou J, Guo H, Gou N, Lin R, Huang Y, Guo W, Wang X. EEG Microstates and Its Relationship With Clinical Symptoms in Patients With Schizophrenia. Front Psychiatry. 2021; 12: 761203. Available from: https://doi.org/ 10.3389/fpsyt.2021.761203.
- de Bock R, Mackintosh AJ, Maier F, Borgwardt S, Riecher-Rössler A, Andreou C. EEG microstates as biomarker for psychosis in ultrahigh-risk patients. Transl Psychiatry. 2020; 10 (1): 300. Available from: https://doi.org/ 10.1038/s41398-020-00963-7. PMID: 32839449; PMCID: PMC7445239.
- Abreu R, Jorge J, Leal A, Koenig T, Figueiredo P. EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States. Brain Topogr. 2021; 34 (1): 41–55. Available from: https://doi.org/ 10.1007/s10548-020-00805-1.
- Michel CM, Brunet D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front Neurol. 2019; 10: 325. Available from: https://doi.org/ 10.3389/fneur.2019.00325.
- Van Oosterom A. The inverse problem of bioelectricity: an evaluation. Med Biol Eng Comput. 2012; 50 (9): 891–902. Available from: https://doi.org/ 10.1007/s11517-012-0941-5.
- Biscay RJ, Bosch-Bayard JF, Pascual-Marqui RD. Unmixing EEG Inverse Solutions Based on Brain Segmentation. Front Neurosci. 2018; 12: 325. Available from: https://doi.org/ 10.3389/ fnins.2018.00325.
- Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006; 30 (6): 823–38. Available from: https://doi.org/ 10.1016/j.neubiorev.2006.06.008.
- Sarter M Fritschy JM Reporting statistical methods and statistical results in EJN. Eur J Neurosci. 2008; 28 (12): 2363-4. Available from: https://doi.org/10.1111/j.1460-9568.2008.06581.x.
- Croce P, Quercia A, Costa S, Zappasodi F. EEG microstates associated with intra- and inter-subject alpha variability. Sci Rep. 2020; 10 (1): 2469. Available from: https://doi.org/ 10.1038/ s41598-020-58787-w.
- Croce P, Spadone S, Zappasodi F, Baldassarre A, Capotosto P. rTMS affects EEG microstates dynamic during evoked activity. Cortex. 2021; 138: 302–10. Available from: https://doi.org/ 10.1016/j.cortex.2021.02.014.
- Kadier N, Stein M, Koenig T. EEG Microstates and Psychosocial Stress During an Exchange Year. Brain Topogr. 2021; 34 (2): 117– 20. Available from: https://doi.org/ 10.1007/s10548-020-00806-0.
- Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999; 29 (2–3): 169–95. Available from: https://www.doi.org/10.1016/s0165-0173(98)00056-3.
- Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev. 2007; 53 (1): 63–88. Available from: https://www.doi.org/10.1016/j. brainresrev.2006.06.003.
- Klimesch W, Doppelmayr M, Hanslmayr S. Upper alpha ERD and absolute power: their meaning for memory performance. Prog Brain Res. 2006; 159: 151–65. Available from: https://www.doi. org/10.1016/S0079-6123(06)59010-7.