ORIGINAL RESEARCH
Immunochromatography-based portable equipment for indication of pathogenic microorganisms and toxins
Federal State Unitary Enterprise "State Scientific Research Institute of Biological Engineering" FMBA of Russia (FSUE “SSRIBE”), Moscow, Russia
Corresponding author: Sergey P. Yarkov
Volokolamskoye, 75, str. 1, 125424, Moscow, Russia; ur.lod@losaid
Funding: the studies were carried out under government contracts with the Russian Federal Medical and Biological Agency (No. 42.128.11.6, No. 42.133.12.6) and the Russian Ministry of Health (No. K-27-FTP/82-1).
Contributing authors: Yarkov SP ― idea, development planning, analysis of findings, participation in tests, manuscript preparation; Shilenko IV ― creation of multi-analysis lateral flow immunoassays, implementation of tests of EkB sets, analysis of obtained results; Tretyakov SI ― creation of lateral flow immunoassays, models and kits, tests, analysis of research results; Ishkov YN ― study management, manuscript editing; Stiazhkin KK ― management, manuscript editing.
- Leavitt SA. A Thin Blue Line: The History of the Pregnancy Test Kits. 2003. [cited 2022, Nov. 14]; Available from: https:// www. history.nih.gov/exhibits /thinblueline/ introduction.html.
- de Puig H, Bosch I, Gehrke L, Hamad-Schifferli K. Challenges of the nano-bio interface in lateral flow and dipstick immunoassays. Trends in Biotechnology. 2017; 35 (12):1169–80.
- Li J, Macdonald J. Multiplexed lateral flow biosensors: Technological advances for radically improving point-of-care diagnoses. Biosensors and Bioelectronics. 2016; 83: 177–92.
- Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry. 2009; 393 (2): 569–82.
- Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. TrAC Trends in Analytical Chemistry. 2014; 55: 81–93.
- Bahadır EB, Sezgintürk MK. Lateral flow assays: Principles, designs and labels. TrAC Trends in Analytical Chemistry. 2016; 82: 286–306.
- Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosensors and Bioelectronics. 2015; 73: 47–63.
- Zherdev AV, Dzantiev BB. Ways to Reach Lower Detection Limits of Lateral Flow Immunoassays. Rapid Test - Advances in Design, Format and Diagnostic Applications, 2018. DOI: 10.5772/ intechopen.76926.
- Karimova TV, Pryadkina EN, Yakunina OYu, Ivanova LK, Duben LG, Kuzubov VI, i dr. Ispol'zovanie immunoxromatograficheskogo analiza dlya indikacii patogennyx biologicheskix agentov. V sbornike: Materialy IX Mezhgosudarstvennoj nauchno-prakticheskoj konferencii «Sovremennye texnologii v realizacii global'noj strategii bor'by s infekcionnymi boleznyami na territorii gosudarstvuchastnikov Sodruzhestva Nezavisimyx Gosudarstv»; 2 oktyabrya 2008 g. Rossijskaya Federaciya, g. Volgograd. 87–88. Russian.
- Yarkov SP, Basharova LA, Tret'yakov SI, Zlobin VN. Sozdanie indikatornyx immunoxromatograficheskix ehlementov dlya vyyavleniya rikketsij Berneta. Problemy osobo opasnyx infekcij. 2013; 4: 79–81. Russian.
- Shilenko IV, Yarkov SP, Artemov AV, Smirnov AM, Kononenko AB. Otechestvennyj immunoxromatograficheskij test dlya vyyavleniya sal'monell razlichnyx serogrupp. Veterinariya i kormlenie. 2011; 4: 12–13. Russian.
- Yarkov SP, Shilenko IV, Titov AA, Brovkina AN, Tret'yakov SI, Xramov EN. Razrabotka mul'tianalitnogo immunoxromatograficheskogo testa dlya indikacii toksinov. Problemy osobo opasnyx infekcij. 2015; 4: 103–08. Russian.
- Yarkov SP, Shilenko IV, Tretyakov SI, Naumov PV. Nosimyj komplekt biologicheskogo kontrolya dlya specificheskoj indikacii biologicheskix porazhayushhix agentov v ob"ektax okruzhayushhej sredy EhkB-01. V cbornike: II Vserossijskaya nauchno-prakticheskaya konferenciya «Issledovanie voprosov radiacionnoj, ximicheskoj i biologicheskoj zashhity v mirnoe i voennoe vremya». 14–15 sentyabrya 2021 g. Kostroma; s. 301– 306. Russian.
- Shilenko IV, Yarkov SP, Zlobin VN. Nosimyj komplekt dlya vyyavleniya vozbuditelej osobo opasnyx infekcij na principe lyuminescentnoj immunoxromatografii. Zhurnal infekcionnoj patologii. 2009; 16 (3): 222–23. Russian.
- Li Q, Zhang S, Cai Y, Yang Y, Hu F, Liu X, et al. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique. International Journal of Food Science & Technology. 2017; 52 (7): 1559–66.
- Razo SC, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB. Double enhanced lateral flow immunoassay for potato virus X based on a combination of magnetic and gold nanoparticles. Analytica Chimica Acta. 2018; 1007: 50–60.
- Kim H-Y, Stojadinovic A, Izadjoo MJ. Affinity maturation of monoclonal antibodies by multi-site-directed mutagenesis. In: Monoclonal Antibodies. Totowa, NJ, USA: Springer, Humana Press, 2014; p. 407–20. Available from: https://link.springer.com/ book/10.1007%2F978-1-62703-992-5#about.
- Dias AM, Roque AC. The future of protein scaffolds as affinity reagents for purification. Biotechnology and Bioengineering. 2017; 114 (3): 481–91.
- Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO. Advances in aptamersbased lateral flow assays. TrAC Trends in Analytical Chemistry. 2017; 97: 385–98.
- Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosensors and Bioelectronics. 2015; 71: 230–42.
- Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Sigle domain antibodies as new biomarker detectors. Diagnostics. 2017; 7 (4): 52.
- Welch NG, Scoble JA, Muir BW, Pigram PJ. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases. 2017; 12 (2): 02D301.
- Shen M, Rusling JF, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017; 116: 95–111.
- Iijima M, Si K. Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosensors and Bioelectronics. 2017; 89: 810–21.
- Kruljec N, Bratkovič T. Alternative affinity ligands for immunoglobulins. Bioconjugate Chemistry. 2017; 28 (8): 2009–30.
- Serebrennikova KV, Samsonova JV, Osipov AP, Senapati D, Kuznetsov DV. Gold nanoflowers and gold nanospheres as labels in lateral flow immunoassay of procalcitonin. Nano Hybrids and Composites. 2017; 13: 47–53.
- Xu P, Li J, Huang X, Duan H, Ji Y, Xiong Y. Effect of the tip length of multi-branched AuNFs on the detection performance of immunochromatographic assays. Analytical Methods. 2016; 8 (16): 3316–24.
- van Amerongen A, Besselink G, Blazkova M, PosthumaTrumpie GA, Koets M, Beelen- Thomissen M. Chapter 19: Carbon nanoparticles as detection label for diagnostic antibody microarrays. In: Abuelzein E, Editor. Trends in Immunolabelled and Related Techniques. Rijeka, Croatia: InTech, 2012; p. 311–330.
- Suárez-Pantaleón C, Wichers J, Abad-Somovilla A, van Amerongen A, Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosensors and Bioelectronics. 2013; 42: 170–6.
- Liu B, Wang L, Tong B, Zhang Y, Sheng W, Pan M, et al. Development and comparison of immunochromatographic strips with three nanomaterial labels: Colloidal gold, nanogoldpolyaniline-nanogold microspheres (GPGs) and colloidal carbon for visual detection of salbutamol. Biosensors and Bioelectronics. 2016; 85: 337–42.
- Yu L, Li P, Ding X, Zhang Q. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta. 2017; 165: 167–75.
- Wang Y, Qin Z, Boulware DR, Pritt BS, Sloan LM, González IJ, et al. Thermal contrast amplification reader yielding 8-fold analytical improvement for disease detection with lateral flow assays. Analytical Chemistry. 2016; 88 (23): 11774–82.
- Barnett JM, Wraith P, Kiely J, Persad R, Hurley K, Hawkins P, et al. An inexpensive, fast and sensitive quantitative lateral flow magneto-immunoassay for total prostate specific antigen. Biosensors. 2014; 4 (3): 204–20.
- Chen Y, Wang K, Liu Z, Sun R, Cui D, He J. Rapid detection and quantification of tumor marker carbohydrate antigen 72–4 (CA72– 4) using a superparamagnetic immunochromatographic strip. Analytical and Bioanalytical Chemistry. 2016; 408 (9): 2319–27.
- Lago-Cachón D, Oliveira-Rodríguez M, Rivas M, Blanco-López MC, Martínez-García JC, Moyano A, et al. Scanning magnetoinductive sensor for quantitative assay of prostate- specific antigen. IEEE Magnetics Letters. 2017; 8: 1–5.
- Zhao Y, Chen X, Lin S, Du D, Lin Y. Integrated immunochromatographic strip with glucometer readout for rapid quantification of phosphorylated proteins. Analytica Chimica Acta. 2017; 964: 1–6.
- Mak WC, Beni V, Turner AP. Lateral-flow technology: From visual to instrumental. TrAC Trends in Analytical Chemistry. 2016; 79: 297–305.
- Quesada-González D, Merkoçi A. Mobile phone-based biosensing: An emerging “diagnostic and communication” technology. Biosensors and Bioelectronics. 2017; 92: 549–62.
- Zarei M. Portable biosensing devices for point-of-care diagnostics: Recent developments and applications. TrAC Trends in Analytical Chemistry. 2017; 91: 26–41.
- Yarkov SР, Tretyakov SI, Shilenko IV, Titov AA, Basharova LA, Khramov EN. Experience of pathogens identification tools development in the environment using immunochromatography. The 13th CBRNe Protection Symposium. Science for Safety&Security. September 24th–26th Malmö, Sweden, 2019; р. 118.