ORIGINAL RESEARCH

Developing and evaluating the effectiveness of wound-healing compounds based on cationic peptides and fullerene

Galkina AA1, Bolyakina DK1, Shatilova AV1, Shatilov AA1, Babikhina MO1, Golomidova AK2, Andreev SM1, Shershakova NN1, Khaitov MR1,3
About authors

1 National Research Center — Institute of Immunology of the Federal Medical Biological Agency, Moscow, Russia

2 Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia

3 Pirogov Russian National Research Medical University, Moscow, Russia

Correspondence should be addressed: Anastasiia А. Galkina
Kashirskoe sh., 24, Moscow, 115522, Russia; moc.liamg@aniklag.a.aisatsana

About paper

Funding: the study was conducted as part of the State Assignment of FMBA “Fullerene-21” (code 612.017.1:616.9).

Author contribution: Galkina AA — setting up methodology, laboratory tests, manuscript writing; Bolyakina DK — laboratory tests; Shatilova AV, Shatilov AA, Babikhina MO — laboratory tests; Golomidova AK — setting up methodology; Shershakova NN — setting up methodology, study concept, manuscript writing, research supervision; Andreev SM — setting up methodology, study concept, research supervision; Khaitov MR — study concept, research supervision.

Compliance with ethical standards: the study was approved by the Bioethics Commission of the Institute of Immunology of FMBA of Russia (order № 102 of November 2015) and conducted in accordance with the Directive 2010/63/EU for animal experiments and the Regulations Regarding Research Involving Laboratory Animals in the National Research Center — Institute of Immunology of FMBA of Russia.

Received: 2023-07-28 Accepted: 2023-09-05 Published online: 2023-09-29
|
  1. The report "Scar Treatment Market Size, Share & Trends Analysis Report By Scar Type, By Product, By End Use And Segment Forecasts, 2019–2026". GLOBE NEWSWIRE. New York, 2019.
  2. Beyene RT, Derryberry SL Jr, Barbul A. The Effect of Comorbidities on Wound Healing. Surg Clin North Am. 2020; 100 (4): 695–705. DOI: 10.1016/j.suc.2020.05.002. Epub 2020 Jun 17. PMID: 32681870.
  3. Sachdeva C, Satyamoorthy K, Murali TS. Microbial Interplay in Skin and Chronic Wounds. Curr Clin Micro Rpt. 2022; 9: 21–31. DOI: 10.1007/s40588-022-00180-4.
  4. Huszczynski SM, Lam JS, Khursigara CM. The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens. 2019; 9: 6. DOI: 10.3390/pathogens9010006.
  5. Puca V, Marulli RZ, Grande R, Vitale I, Niro A, Molinaro G, et al. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three– Years Retrospective Study. Antibiotics (Basel). 2021; 10 (10): 1162. PubMed PMID: 34680743; PubMed PMCID: PMC8532735.
  6. Prohorov DV, Shherbenyova AA, Ngema MV, Ispiryan MB, Kuznecova MYu. Sovremennye metody kompleksnogo lecheniya i profilaktiki rubcov kozhi. Krymskij terapevticheskij zhurnal. 2021; 1: 26–31. Russian.
  7. Puca V, Traini T, Guarnieri S, Carradori S, Sisto F, Macchione N, et al. The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection. Molecules. 2019; 24 (12): 2280. PubMed PMID: 31248162; PubMed PMCID: PMC6630542.
  8. Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2019; 19 (1): 54.
  9. Samanta I, Bandyopadhyay S. Streptococcus. In: Antimicrobial Resistance in Agriculture. United States Cambridge: Academic Press in an imprint of Elsevier, 2020; p. 217–232.
  10. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020; 19: 311–32. DOI: 10.1038/ s41573-019-0058-8.
  11. Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003; 38 (11–12): 913–23. PubMed PMID: 14642323.
  12. Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005; 5 (12): 2578–85. PubMed PMID: 16351219.
  13. Zhou Z, Joslin S, Dellinger A, Ehrich M, Brooks B, Ren Q, et al. A novel class of compounds with cutaneous wound healing properties. J Biomed Nanotechnol. 2010; 6 (5): 605–11. PubMed PMID: 21329053.
  14. Andreev S, Purgina D, Bashkatova E, Garshev A, Maerle A, Andreev I, et al. Study of fullerene aqueous dispersion prepared by novel dialysis method: simple way to fullerene aqueous solution. Fullerenes Nanotubes and Carbon Nanostructures. 2015; 23: 792–800.
  15. Shershakova NN, Andreev SM, Tomchuk AA, Makarova EA, Nikonova AA, Turetskiy EA, et al. Wound healing activity of aqueous dispersion of fullerene C60 produced by "green technology". Nanomedicine. 2023; 47: 102619. Epub 2022 Oct 19.
  16. Molchanova VI, Chikalovec IV, Chernikov OV, Popov AM, Krivoshapko ON, Lukyanov PA. Sravnitel'noe izuchenie biologicheskoj aktivnosti bioglikanov iz dal'nevostochnoj midii crenomytilus grayanus. Tixookeanskij medicinskij zhurnal. 2012; 1 (47): 47–50. Russian.
  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real–time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods. 2001; 25 (4): 402–8. PubMed PMID: 11846609.
  18. Shamova OV, Zharkova MS, Chernov AN, Vladimirova EV, Suxareva MS, Komlev AS. i dr. Antimikrobnye peptidy vrozhdennogo immuniteta kak prototipy novyx sredstv bor'by s antibiotikorezistentnymi bakteriyami. Rossijskij zhurnal personalizirovannoj mediciny. 2021; 1 (1): 146–72. Russian.
  19. Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, et al. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J. Mater. Chemistry B. 2020; 8 (13): 2607–17. DOI: 10.1039/c9tb02485a.
  20. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003; 83 (3): 835–70. PubMed PMID: 12843410.
  21. Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, et al. Tumor necrosis factor-alpha (TNF-α) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 2012; 20 (1): 38–49. Epub 2011 Dec 8. PubMed PMID: 22151742; PubMed PMCID: PMC3287056.
  22. Stockmann C, Kirmse S, Helfrich I, Weidemann A, Takeda N, Doedens A, et al. A wound size–dependent effect of myeloid cell– derived vascular endothelial growth factor on wound healing. J Invest Dermatol. 2011; 131 (3): 797–801. Epub 2010 Nov 25. PubMed PMID: 21107350.
  23. Robertson FM, Pellegrini AE, Ross MR, Oberyszyn AS, Boros LG, Bijur GN, et al. Interleukin-1alpha gene expression during wound healing. Wound Rep Reg. 1995; 3 (4): 473–84. PubMed PMID: 17147659.
  24. Shershakova N, Baraboshkina E, Andreev S, Purgina D, Struchkova I, Kamyshnikov O, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnology. 2016; 14: 8. PubMed PMID: 26810232; PubMed PMCID: PMC4727272.
  25. Spohn R, Daruka L, Lázár V, et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun. 2019; 10 (1): 4538. PubMed PMID: 31586049; PubMed PMCID: PMC6778101.
  26. Jangir PK, Ogunlana L, MacLean RC. Evolutionary constraints on the acquisition of antimicrobial peptide resistance in bacterial pathogens. Trends Microbiol. 2021; 29 (12): 1058–1061. Epub 2021 Apr 6. PubMed PMID: 33836929. PubMed PMID: 32355003; PubMed PMCID: PMC8097767.
  27. Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science. 2020; 368 (6490): eaau5480. PubMed PMID: 32355003; PubMed PMCID: PMC8097767.
  28. Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics. 2021; 13 (1): 101.