ORIGINAL RESEARCH
Developing and evaluating the effectiveness of wound-healing compounds based on cationic peptides and fullerene
1 National Research Center — Institute of Immunology of the Federal Medical Biological Agency, Moscow, Russia
2 Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
3 Pirogov Russian National Research Medical University, Moscow, Russia
Correspondence should be addressed: Anastasiia А. Galkina
Kashirskoe sh., 24, Moscow, 115522, Russia; moc.liamg@aniklag.a.aisatsana
Funding: the study was conducted as part of the State Assignment of FMBA “Fullerene-21” (code 612.017.1:616.9).
Author contribution: Galkina AA — setting up methodology, laboratory tests, manuscript writing; Bolyakina DK — laboratory tests; Shatilova AV, Shatilov AA, Babikhina MO — laboratory tests; Golomidova AK — setting up methodology; Shershakova NN — setting up methodology, study concept, manuscript writing, research supervision; Andreev SM — setting up methodology, study concept, research supervision; Khaitov MR — study concept, research supervision.
Compliance with ethical standards: the study was approved by the Bioethics Commission of the Institute of Immunology of FMBA of Russia (order № 102 of November 2015) and conducted in accordance with the Directive 2010/63/EU for animal experiments and the Regulations Regarding Research Involving Laboratory Animals in the National Research Center — Institute of Immunology of FMBA of Russia.
- The report "Scar Treatment Market Size, Share & Trends Analysis Report By Scar Type, By Product, By End Use And Segment Forecasts, 2019–2026". GLOBE NEWSWIRE. New York, 2019.
- Beyene RT, Derryberry SL Jr, Barbul A. The Effect of Comorbidities on Wound Healing. Surg Clin North Am. 2020; 100 (4): 695–705. DOI: 10.1016/j.suc.2020.05.002. Epub 2020 Jun 17. PMID: 32681870.
- Sachdeva C, Satyamoorthy K, Murali TS. Microbial Interplay in Skin and Chronic Wounds. Curr Clin Micro Rpt. 2022; 9: 21–31. DOI: 10.1007/s40588-022-00180-4.
- Huszczynski SM, Lam JS, Khursigara CM. The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens. 2019; 9: 6. DOI: 10.3390/pathogens9010006.
- Puca V, Marulli RZ, Grande R, Vitale I, Niro A, Molinaro G, et al. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three– Years Retrospective Study. Antibiotics (Basel). 2021; 10 (10): 1162. PubMed PMID: 34680743; PubMed PMCID: PMC8532735.
- Prohorov DV, Shherbenyova AA, Ngema MV, Ispiryan MB, Kuznecova MYu. Sovremennye metody kompleksnogo lecheniya i profilaktiki rubcov kozhi. Krymskij terapevticheskij zhurnal. 2021; 1: 26–31. Russian.
- Puca V, Traini T, Guarnieri S, Carradori S, Sisto F, Macchione N, et al. The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection. Molecules. 2019; 24 (12): 2280. PubMed PMID: 31248162; PubMed PMCID: PMC6630542.
- Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2019; 19 (1): 54.
- Samanta I, Bandyopadhyay S. Streptococcus. In: Antimicrobial Resistance in Agriculture. United States Cambridge: Academic Press in an imprint of Elsevier, 2020; p. 217–232.
- Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020; 19: 311–32. DOI: 10.1038/ s41573-019-0058-8.
- Bosi S, Da Ros T, Spalluto G, Prato M. Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem. 2003; 38 (11–12): 913–23. PubMed PMID: 14642323.
- Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F. Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005; 5 (12): 2578–85. PubMed PMID: 16351219.
- Zhou Z, Joslin S, Dellinger A, Ehrich M, Brooks B, Ren Q, et al. A novel class of compounds with cutaneous wound healing properties. J Biomed Nanotechnol. 2010; 6 (5): 605–11. PubMed PMID: 21329053.
- Andreev S, Purgina D, Bashkatova E, Garshev A, Maerle A, Andreev I, et al. Study of fullerene aqueous dispersion prepared by novel dialysis method: simple way to fullerene aqueous solution. Fullerenes Nanotubes and Carbon Nanostructures. 2015; 23: 792–800.
- Shershakova NN, Andreev SM, Tomchuk AA, Makarova EA, Nikonova AA, Turetskiy EA, et al. Wound healing activity of aqueous dispersion of fullerene C60 produced by "green technology". Nanomedicine. 2023; 47: 102619. Epub 2022 Oct 19.
- Molchanova VI, Chikalovec IV, Chernikov OV, Popov AM, Krivoshapko ON, Lukyanov PA. Sravnitel'noe izuchenie biologicheskoj aktivnosti bioglikanov iz dal'nevostochnoj midii crenomytilus grayanus. Tixookeanskij medicinskij zhurnal. 2012; 1 (47): 47–50. Russian.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real–time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods. 2001; 25 (4): 402–8. PubMed PMID: 11846609.
- Shamova OV, Zharkova MS, Chernov AN, Vladimirova EV, Suxareva MS, Komlev AS. i dr. Antimikrobnye peptidy vrozhdennogo immuniteta kak prototipy novyx sredstv bor'by s antibiotikorezistentnymi bakteriyami. Rossijskij zhurnal personalizirovannoj mediciny. 2021; 1 (1): 146–72. Russian.
- Kozhikhova KV, Shilovskiy IP, Shatilov AA, Timofeeva AV, Turetskiy EA, Vishniakova LI, et al. Linear and dendrimeric antiviral peptides: Design, chemical synthesis and activity against human respiratory syncytial virus. J. Mater. Chemistry B. 2020; 8 (13): 2607–17. DOI: 10.1039/c9tb02485a.
- Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003; 83 (3): 835–70. PubMed PMID: 12843410.
- Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, et al. Tumor necrosis factor-alpha (TNF-α) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 2012; 20 (1): 38–49. Epub 2011 Dec 8. PubMed PMID: 22151742; PubMed PMCID: PMC3287056.
- Stockmann C, Kirmse S, Helfrich I, Weidemann A, Takeda N, Doedens A, et al. A wound size–dependent effect of myeloid cell– derived vascular endothelial growth factor on wound healing. J Invest Dermatol. 2011; 131 (3): 797–801. Epub 2010 Nov 25. PubMed PMID: 21107350.
- Robertson FM, Pellegrini AE, Ross MR, Oberyszyn AS, Boros LG, Bijur GN, et al. Interleukin-1alpha gene expression during wound healing. Wound Rep Reg. 1995; 3 (4): 473–84. PubMed PMID: 17147659.
- Shershakova N, Baraboshkina E, Andreev S, Purgina D, Struchkova I, Kamyshnikov O, et al. Anti-inflammatory effect of fullerene C60 in a mice model of atopic dermatitis. J Nanobiotechnology. 2016; 14: 8. PubMed PMID: 26810232; PubMed PMCID: PMC4727272.
- Spohn R, Daruka L, Lázár V, et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun. 2019; 10 (1): 4538. PubMed PMID: 31586049; PubMed PMCID: PMC6778101.
- Jangir PK, Ogunlana L, MacLean RC. Evolutionary constraints on the acquisition of antimicrobial peptide resistance in bacterial pathogens. Trends Microbiol. 2021; 29 (12): 1058–1061. Epub 2021 Apr 6. PubMed PMID: 33836929. PubMed PMID: 32355003; PubMed PMCID: PMC8097767.
- Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science. 2020; 368 (6490): eaau5480. PubMed PMID: 32355003; PubMed PMCID: PMC8097767.
- Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics. 2021; 13 (1): 101.