ORIGINAL RESEARCH

Computational phantom for a 5-year old child red bone marrow dosimetry due to incorporated beta emitters

About authors

1 Urals Research Center for Radiation Medicine of the Federal Medical-Biological Agency, Chelyabinsk, Russia

2 Chelyabinsk State University, Chelyabinsk, Russia

Correspondence should be addressed: Pavel A. Sharagin
Vorovskogo, 68-а, Chelyabinsk, 454141, Russia; ur.mrcru@nigarahs

About paper

Funding: the study was performed within the framework of the Federal Targeted Program "Ensuring Nuclear and Radiation Safety for 2016–2020 and for the Period up to 2035" and supported by the Federal Medical Biological Agency of Russia.

Author contribution: Sharagin PA — data acquisition, analysis and interpretation, manuscript writing and editing; Tolstykh EI — developing the research method; Shishkina EA — developing the concept, manuscript editing.

Received: 2023-10-23 Accepted: 2023-12-05 Published online: 2023-12-31
|
  1. Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV. Contemporary Understanding of Radioactive Contamination of the Techa River in 1949–1956. Radiats Biol Radioecol. 2016; 56 (5): 523–34. PMID: 30703313.
  2. Krestinina LY, Epifanova SB, Silkin SS, Mikryukova LD, Degteva MO, Shagina NB, Akleyev AV. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys. 2013; 52 (1): 47–57. DOI: 10.1007/s00411-012-0438-5.
  3. Akleev AV. Hronicheskij luchevoj sindrom u zhitelej pribrezhnyh sel reki Techa. Cheljabinsk: Kniga, 2012; p. 464. Russian.
  4. Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of radiation effects on cancer risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies. Radiat Prot Dosimetry. 2017; 173 (1–3): 26–31. DOI: 10.1093/rpd/ncw316.
  5. Degteva MO, Napier BA, Tolstykh EI, et al. Enhancements in the Techa River dosimetry system: TRDS-2016D Code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019; 117 (4): 378–87. DOI:10.1097/HP.0000000000001067.
  6. Spiers FW, Beddoe AH, Whitwell JR. Mean skeletal dose factors for beta-particle emitters in human bone. Part I: volume-seeking radionuclides. The British journal of radiology. 1978; 51 (608): 622–7.
  7. O'Reilly SE, DeWeese LS, Maynard MR, Rajon DA, Wayson MB, Marshall EL, et al. An 13 image-based skeletal dosimetry model for the ICRP reference adult female-internal electron 14 sources. Phys Med Biol. 2016; 61 (24): 8794–824.
  8. Xu XG, Chao TC, Bozkurt A. VIP-Man: an image-based wholebody adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys. 2000; 78 (5): 476–86. DOI: 10.1097/00004032200005000-00003. PMID: 10772019.
  9. Shah AP, Bolch WE, Rajon DA, Patton PW, Jokisch DW. A pairedimage radiation transport model for skeletal dosimetry. J Nucl Med. 2005; 46 (2): 344–53. PMID: 15695796.
  10. Pafundi D. Image-based skeletal tissues and electron dosimetry models for the ICRP reference pediatric age series [dissertation]. Gainesville: University of Florida, 2009.
  11. Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Phys Med Biol. 2011; 56 (8): 2309–46. DOI: 10.1088/0031-9155/56/8/001.
  12. Bolch WE, Eckerman K, Endo A, et al. ICRP Publication 143: Paediatric Reference Computational Phantoms. Ann ICRP. 2020; 49 (1): 5–297. DOI: 10.1177/0146645320915031.
  13. Degteva MO, Tolstykh EI, Shishkina EA, Sharagin PA, Zalyapin VI, Volchkova AY, et al. Stochastic parametric skeletal dosimetry model for humans: General approach and application to active marrow exposure from bone-seeking beta-particle emitters. PLoS ONE. 2021; 16 (10): e0257605. DOI: 10.1371/journal. pone.0257605.
  14. Degteva MO, Shishkina EA, Tolstykh EI, Zalyapin VI, Sharagin PA, Smith MA, et al. Methodological approach to development of dosimetric models of the human skeleton for beta-emitting radionuclides. Radiation Hygiene. 2019; 12 (2): 66–75. DOI: 10.21514/1998-426X-2019-12-2-66-75. Russian.
  15. Volchkova AYu, Sharagin PA, Shishkina EA. Internal bone marrow dosimetry: the effect of the exposure due to 90Sr incorporated in the adjacent bone segments. Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software. 2022; 15 (4): 44–58. DOI: 10.14529/mmp220404.
  16. Shishkina EA, Sharagin PA, Volchkova AYu. Analytical description of dose forming in bone marrow from 90Sr in calcified tissues. Issues of Radiation Safety. 2021; 3: 72–82. Russian.
  17. Silkin SS, Krestinina LYu, Startsev VN, Akleev AV. Ural cohort of emergency-irradiated population. Extreme medicine. 2019; 21 (3): 393–402. Russian.
  18. Sharagin PA, Shishkina EA, Tolstykh EI. Computational phantom for red bone marrow dosimetry from incorporated beta emitters in a newborn baby. Extreme Medicine. 2022; 4: 74–82. DOI: 10.47183/mes.2022.045. Russian.
  19. Sharagin PA, Shishkina EA, Tolstykh EI. Computational red bone marrow dosimetry phantom of a one-year-old child enabling assessment of exposure due to incorporated beta emitters. Extreme Medicine. 2023; 3: 44–55. DOI: 10.47183/mes.2023.030. Russian.
  20. Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol. 1981; 26 (3): 389–400.
  21. Sharagin PA, Shishkina EA, Tolstykh EI, Volchkova AYu, Smith MA, Degteva MO. Segmentation of hematopoietic sites of human skeleton for calculations of dose to active marrow exposed to bone-seeking radionuclides. RAD Conference Proceedings. 2018; 3: 154–8. DOI:10.21175/RadProc.2018.33.
  22. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Annals of the ICRP. Annals of the ICRP. 2002; 32 (3–4): 1–277.
  23. Woodard HQ and White DR. The composition of body tissues. Br. J. Ru&oI. 1986; 59: 1209–18.
  24. Sharagin PA, Tolstykh EI, Shishkina EA, Degteva MO. Dosimetric modeling of bone for bone-seeking beta-emitting radionuclides: size parameters and segmentation. In: Proceedings of the contemporary issues of radiobiology — 2021 International Scientific Conference; 2021 Sept 23–24; Gomel, Belarus. 2021; p. 200–4. Russian.
  25. Tolstykh EI, Sharagin PA, Shishkina EA, Degteva MO. Dosimetric modeling of red bone marrow exposure from 89,90Sr: resolving age-dependent trabecular bone parameters. In: Proceedings of the contemporary issues of radiobiology — 2021 International Scientific Conference; 2021 Sept 23–24; Gomel, Belarus. 2021; p. 176–9. Russian.
  26. Tolstykh EI, Sharagin PA, Shishkina EA, Volchkova AY, Degteva MO. Anatomical and morphological basis for dosimetric modeling of the human trabecular bone using a stochastic parametric approach. Clinical Bulletin of the Burnazyan State Medical Center. 2022; 3: 25–40. Russian.
  27. Shishkina EA, Timofeev YS, Volchkova AY, Sharagin PA, Zalyapin VI, Degteva MO, et al. Trabecula: a random generator of computational phantoms for bone marrow dosimetry. Health Phys. 2020; 118 (1): 53–9. DOI: 10.1097/HP.0000000000001127.
  28. Zalyapin VI, Timofeev YuS, Shishkina EA. A parametric stochastic model of bone geometry. Bulletin of Southern Urals State University, Issue «Mathematical Modelling. Programming & Computer Software» (SUSU MMCS). 2018; 11 (2): 44–57. DOI: 10.14529/mmp180204.
  29. Robinson RA. Chemical analysis and electron microscopy of bone. In: Rodahl K, Nicholson JT, Brown EM, editors. Bone as a tissue. New York: McGraw-Hill, 1960; p. 186–250.
  30. Vogler JB 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988; 168 (3): 679–93.
  31. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiology. 1998; 27: 471–83.
  32. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol. 1998; 8 (8): 1327–34.
  33. Taccone A, Oddone M, Dell'Acqua AD, Occhi M, Ciccone MA. MRI «road-map» of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatr Radiol. 1995; 25 (8): 596–606. PubMed PMID: 8570312.
  34. Taccone A, Oddone M, Occhi M, Dell'Acqua AD, Ciccone MA. MRI «road-map» of normal age-related bone marrow. I. Cranial bone and spine. Pediatr Radiol. 1995; 25 (8): 588–95. PubMed PMID: 8570311.
  35. Milovanovic P, Djonic D, Hahn M, Amling M, Busse B, Djuric M. Region-dependent patterns of trabecular bone growth in the human proximal femur: A study of 3D bone microarchitecture from early postnatal to late childhood period. Am J Phys Anthropol. 2017; 164 (2): 281–91. DOI: 10.1002/ajpa.23268.
  36. Ryan TM, Krovitz GE. Trabecular bone ontogeny in the human proximal femur. J Hum Evol. 2006; 51 (6): 591–602.
  37. Cunningham C, Scheuer L, Black S. Developmental Juvenile Osteology. 2rd ed. Elsevier Academic Press, 2016; p. 630.
  38. Ryan TM, Raichlen DA, Gosman JH. Structural and mechanical changes in trabecular bone during early development in the human femur and humerus. Chapter 12. In: Percival CJ, Richtsmeier JT, editors. Building Bones: Bone Formation and Development in Anthropology. Cambridge University Press, 2017; p. 281–302.
  39. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, et al. Normative data for iliac bone histomorphometry in growing children. Bone. 2000; 26 (2): 103–9.
  40. Volpato V. Bone endostructure morphogenesis of the human ilium. C. R. Palevol 7. 2008; 463–71. DOI: 10.1016/j.crpv.2008.06.001.
  41. Rodriguez-Florez N, Ibrahim A, Hutchinson JC, Borghi A, James G, Arthurs OJ, et al. Cranial bone structure in children with sagittal craniosynostosis: Relationship with surgical outcomes. J Plast Reconstr Aesthet Surg. 2017; 70 (11): 1589–97. DOI: 10.1016/j. bjps.2017.06.017.
  42. Gao S, Ren L, Qui R, Wu Z, Li C, Li J. Electron absorbed fractions in an image-based microscopic skeletal dosimetry model of chinese adult male. Radiat Prot Dosimetry. 2017; 175 (4): 450–9.
  43. Pafundi D. Image-based skeletal tissues and electron dosimetry models for the ICRP reference pediatric age series [dissertation]. Gainesville: University of Florida, 2009.
  44. Milenković P. Age Estimation Based on Analyses of Sternal End of Clavicle and the First Costal Cartilage Doctoral Dissertation [dissertation]. Belgrade: University Of Belgrade School of Medicine, 2013.
  45. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009; 24 (6): 1033–42. DOI: 10.1359/jbmr.081255.
  46. Mitchell DM, Caksa S, Yuan A, Bouxsein ML, Misra M, BurnettBowie SM. Trabecular bone morphology correlates with skeletal maturity and body composition in healthy adolescent girls. J Clin Endocrinol Metab. 2018; 103 (1): 336–45. DOI: 10.1210/jc.201701785.
  47. Li X, Williams P, Curry EJ, Choi D, Craig EV, Warren RF, et al. Trabecular bone microarchitecture and characteristics in different regions of the glenoid. Orthopedics. 2015; 38 (3): 163–8.
  48. Knowles NK, G Langohr GD, Faieghi M, Nelson A, Ferreira LM. Development of a validated glenoid trabecular density-modulus relationship. J Mech Behav Biomed Mater. 2019; 90: 140–5. DOI: 10.1016/j.jmbbm.2018.10.013.
  49. Jun BJ, Vasanji A, Ricchetti ET, Rodriguez E, Subhas N, Li ZM, Iannotti JP. Quantification of regional variations in glenoid trabecular bone architecture and mineralization using clinical computed tomography images. J Orthop Res. 2018; 36 (1): 85– 96. DOI: 10.1002/jor.23620.
  50. Frich LH, Odgaard A, Dalstra M. Glenoid bone architecture J Shoulder Elbow Surg. 1998; 7 (4): 356–61.
  51. Kneissel M, Roschger P, Steiner W, et al. Cancellous bone structure in the growing and aging lumbar spine in a historic Nubian population. Calcif Tissue Int. 1997; 61 (2): 95–100. DOI: 10.1007/s002239900302.
  52. Arbabi A. A quantitative analysis of the structure of human sternum. J Med Phys. 2009; 34 (2): 80–6.
  53. Bartl R, Frisch B. Biopsy of bone in internal medicine — an atlas and sourcebook. Dordrecht: Kluwer Academic Publishers, 1993; p. 250.
  54. Baur-Melnyk A. Magnetic Resonance Imaging of the Bone Marrow. Springer Science & Business Media, 2012; p. 371.
  55. Florence JL. Linear and cortical bone dimensions as indicators of health status in subadults from the Milwaukee County Poor Farm Cemetery. M. A.: University of Colorado at Denver, 2007.
  56. Maresh MM. Measurements from roentgenograms. In: McCammon RW, editor. Human Growth and Development. Springfield, IL: Charles C. Thomas, 1970; p. 157–200.
  57. Singh SP, Malhotra P, Sidhu LS, Singh PP. Skeletal frame size of spitian children. Journal of Human Ecology. 2007; 21 (3): 227–30.
  58. Zivicnjak M, Smolej Narancić N, Szirovicza L, Franke D, Hrenović J, Bisof V, et al. Gender-specific growth patterns of transversal body dimensions in Croatian children and youth (2 to 18 years of age). Coll Antropol. 2008; 32 (2): 419–31. PubMed PMID: 18756891.
  59. Svadovskij BS. Vozrastnaja perestrojka kostnoj tkani. O roste i razvitii diafizov plechevoj i bedrennoj kostej. M.: Izd-vo akad. ped. nauk RSFSR, 1961; p. 110. Russian.
  60. Miles AEW. Growth Curves of Immature Bones from a Scottish Island Population of Sixteenth to mid-Nineteenth Century: Limb-bone Diaphyses and Some Bones of the Hand and Foot. International Journal of Osteoarcheology. 1994; 4: 121–36.
  61. Dhavale N, Halcrow SE, Buckley HR, Tayles N, Domett KM, Gray AR. Linear and appositional growth in infants and children from the prehistoric settlement of Ban Non Wat, Northeast Thailand: Evaluating biological responses to agricultural intensification in Southeast Asia, Journal of Archaeological Science: Reports. 2017; 11: 435–46. ISSN 2352-409.
  62. Djurić M, Milovanović P, Djonić D, Minić A, Hahn M. Morphological characteristics of the developing proximal femur: a biomechanical perspective. Srp Arh Celok Lek. 2012; 140 (11–12): 738–45. PubMed PMID: 23350248.
  63. Gosman JH, Ketcham RA. Patterns in ontogeny of human trabecular bone from SunWatch Village in the Prehistoric Ohio Valley: general features of microarchitectural change. Am J Phys Anthropol. 2009; 138 (3): 318–32. DOI: 10.1002/ajpa.20931. PubMed PMID: 18785633.
  64. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002; 17 (3): 363–72. PubMed PMID: 11874228.
  65. Danforth ME, Wrobel GD, Armstrong CW, Swanson D. Juvenile age estimation using diaphyseal long bone lengths among ancient Maya populations. Latin American Antiquity. 2017; 20 (1): 3–13.
  66. Byers S, Moore AJ, Byard RW, Fazzalari NL. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone. 2000; 27 (4): 495–501.
  67. Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat. 2019; DOI: 10.1111/joa.13116.
  68. Pfeiffer S. Cortical Bone Histology in Juveniles. Available from: https://www.researchgate.net/publication/303179375_Cortical_bone_histology_in_Juveniles.
  69. Hresko AM, Hinchcliff EM, Deckey DG, Hresko MT. Developmental sacral morphology: MR study from infancy to skeletal maturity. Eur Spine J. 2020; 29 (5): 1141–6. DOI: 10.1007/s00586-02006350-6.
  70. Kuznecov LE. Perelomy taza u detej (morfologija, biomehanika, diagnostika). M.: Folium, 1994; p. 192. Russian.
  71. Mavrych V, Bolgova O, Ganguly P and Kashchenko S. Agerelated changes of lumbar vertebral body morphometry. Austin J Anat. 2014; 1 (3): 7.
  72. Sadofeva VI. Normal'naja rentgenoanatomija kostno-sustavnoj sistemy detej. Leningrad: Medicina, 1990; p. 216. Russian.
  73. Bernert Zs, Évinger S, Hajdu T. New data on the biological age estimation of children using bone measurements based on historical populations from the Carpathian Basin. Annales Historico-Naturales Musei Nationalis Hungarici. 2007; 99: 199– 206.
  74. White TD, Black MT, Folkens PA. Human osteology: 3rd ed. Academic Press, 2011; p. 688.
  75. Gindhart PS. Growth standards for the tibia and radius in children aged one month through eighteen years. Am J Phys Anthrop. 1973; 39: 41–8.
  76. Lopez-Costas O, Rissech C, Trancho G, Turbón D. Postnatal ontogenesis of the tibia. Implications for age and sex estimation. Forensic Sci Int. 2012; 214 (1–3): 207.e1–11. DOI: 10.1016/j.forsciint.2011.07.038. PubMed PMID: 21862250.
  77. Suominen PK, Nurmi E, Lauerma K. Intraosseous access in neonates and infants: risk of severe complications — a case report. Acta Anaesthesiol Scand. 2015; 59 (10): 1389–93. DOI: 10.1111/aas.12602. PubMed PMID: 26300243.
  78. Blake KAS. An investigation of sex determination from the subadult pelvis: A morphometric analysis [dissertation]. Pittsburgh: University of Pittsburgh, 2011.
  79. Cunningham CA, Black SM. Iliac cortical thickness in the neonate — the gradient effect. J Anat. 2009a; 215 (3): 364–70. DOI: 10.1111/j.1469-7580.2009.01112.x.
  80. Cunningham CA, Black SM. Anticipating bipedalism: trabecular organization in the newborn ilium. J Anat. 2009b; 214 (6): 817– 29. DOI: 10.1111/j.1469-7580.2009.01073.x.
  81. Rissech C, Garcıa M, Malgosa A. Sex and age diagnosis by ischium morphometric analysis. Forensic Science International. 2003; 135: 188–96.
  82. Rissech C, Malgosa A. Pubis growth study: Applicability in sexual and age diagnostic. Forensic Science International. 2007; 173: 137–45.
  83. Corron L, Marchal F, Condemi S, Chaumoître K, Adalian P. A New Approach of Juvenile Age Estimation using Measurements of the Ilium and Multivariate Adaptive Regression Splines (MARS) Models for Better Age Prediction. Forensic Sci. 2017; 62 (1): 18– 29. DOI: 10.1111/1556-4029.13224.
  84. Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone. 2000; 27 (4): 487–94. PMID: 11033443.
  85. Schnitzler CM, Mesquita JM, Pettifor JM. Cortical bone development in black and white South African children: iliac crest histomorphometry. Bone. 2009; 44 (4): 603–11. DOI: 10.1016/j.bone.2008.12.009.
  86. De Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe VV. Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med. 2016; 130 (5): 1371–7. DOI: 10.1007/s00414-016-1324-5.
  87. Margulies S, Coats B. Experimental injury biomechanics of the pediatric head and brain. Chapter 4. In: Crandall J, Myers B, Meaney D, et al, editors. Pediatric Injury Biomechanics. New York: Springer Science+Business Media, 2013; p. 157–190.
  88. Li Z, Park BK, Liu W, Zhang J, Reed MP, Rupp JD, et al. A statistical skull geometry model for children 0–3 years old. PLoS One. 2015; 10 (5). DOI: 10.1371/journal.pone.0127322.
  89. Bleuze MM, Wheeler SM, Williams LJ, Dupras TL. Growth of the pectoral girdle in a sample of juveniles from the kellis 2 cemetery, Dakhleh Oasis, Egypt. Am J Hum Biol. 2016; 28 (5): 636–45.
  90. McGraw MA, Mehlman CT, Lindsell CJ, Kirby CL. Postnatal growth of the clavicle: birth to eighteen years of age. Journal of Pediatric Orthopedics. 2009; 29: 937.
  91. Bernat A, Huysmans T, Van Glabbeek F, Sijbers J, Gielen J, Van Tongel A. The anatomy of the clavicle: a three-dimensional cadaveric study. Clin Anat. 2014; 27 (5): 712–23.
  92. Corron L. Juvenile age estimation in physical anthropology: A critical review of existing methods and the application of two standardised methodological approaches. Biological anthropology [dissertation]. Marseille: Aix-Marseille Universite, 2016.
  93. Vallois HV. L’omoplate humaine. Bulletin de la Sociétié d’Anthropolgie de Paris. 1946; 7: 16–99.
  94. Saunders S, Hoppa R, Southern R. Diaphyseal growth in a nineteenth-century skeletal sample of subadults from St Thomas’ Church, Belleville, Ontario. International Journal of Osteoarchaeology. 1993; 3: 265–81.
  95. Badr El Dine F, Hassan H. Ontogenetic study of the scapula among some Egyptians: Forensic implications in age and sex estimation using Multidetector Computed Tomography. Egyptian Journal of Forensic Sciences. 2015; 6 (2): 56–77.
  96. Rissech C, Black S. Scapular development from neonatal period to skeletal maturity. A preliminary study. Int J Osteoarchaeol. 2007; 17: 451–64.
  97. Bayaroğulları H, Yengil E, Davran R, Ağlagül E, Karazincir S, Balcı A. Evaluation of the postnatal development of the sternum and sternal variations using multidetector CT. Diagn Interv Radiol. 2014; 20 (1): 82–9.
  98. Riach IC. Ossification in the sternum as a means of assessing skeletal age. J Clin Pathol. 1967; 20 (4): 589–90.
  99. Johnson KT, Al-Holou WN, Anderson RC, Wilson TJ, Karnati T, Ibrahim M, et al. Morphometric analysis of the developing pediatric cervical spine. J Neurosurg Pediatr. 2016; 18 (3): 377–89. DOI: 10.3171/2016.3. PEDS1612. PubMed PMID: 27231821.
  100. Caldas Md P, Ambrosano GM, Haiter Neto F. New formula to objectively evaluate skeletal maturation using lateral cephalometric radiographs. Braz Oral Res. 2007; 21 (4): 330–5. PubMed PMID: 18060260.
  101. Peters JR, Chandrasekaran C, Robinson LF, Servaes SE, Campbell RM Jr, Balasubramanian S. Age- and gender-related changes in pediatric thoracic vertebral morphology. Spine J. 2015; 15 (5): 1000–20. DOI: 10.1016/j.spinee.2015.01.016.
  102. Peters JR, Servaes SE, Cahill PJ, Balasubramanian S. Morphology and growth of the pediatric lumbar vertebrae. Spine J. 2021; 21 (4): 682–97. DOI: 10.1016/j.spinee.2020.10.029.
  103. Newman SL, Gowland RL. The use of non-adult vertebral dimensions as indicators of growth disruption and non-specific health stress in skeletal populations. American journal of physical anthropology. 2015; 158 (1): 155–64.
  104. Comeau A. Age-related changes in geometric characteristics of the pediatric thoracic cage and comparison of thorax shape with a Pediatric CPR Manikin [dissertation]. Philadelphia: Drexel University, 2010.
  105. Knirsch W, Kurtz C, Häffner N, Langer M, Kececioglu D. Normal values of the sagittal diameter of the lumbar spine (vertebral body and dural sac) in children measured by MRI. Pediatr Radiol. 2005; 35: 419–24. DOI: 10.1007/s00247-004-1382-6.