ORIGINAL RESEARCH

The impact of background lymphopenia on the reactivity of nonspecific immunity in response to total body cold exposure

About authors

N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia

Correspondence should be addressed: Veronika P. Patrakeeva
Nikolsky prospect, 20, Arkhangelsk, 163020, Russia; ur.xednay@akinorev.aweekartap

About paper

Funding: the study was performed within the Program of Fundamental Scientific Research on the topic of the environmental immunology laboratory, Institute of Physiology of Natural Adaptations, N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences (project № 122011300377-5).

Author contribution: Patrakeeva VP — study planning, data collection, processing and interpretation, literature review, manuscript writing; Kontievskaya EV — data collection and processing.

Compliance with ethical standards: the study was conducted with the written consent of all participants and in accordance with the principles of the Declaration of Helsinki (1975, rev. 2013). The study was approved by the Ethics Committee of the N. Laverov Federal Center for Integrated Arctic Research, the Ural branch of RAS (protocol № 4 of 7 December 2016, protocol № 6 of 14 February 2022).

Received: 2023-09-18 Accepted: 2024-02-02 Published online: 2024-03-19
|
  1. Garmaeva DK, Belolyubskaya DS, Fyodorova AI, Arzhakova LI, Afanasieva OG. The effect of the cold stress on morphological and functional parameters of the thymus in the experiment. Morphological Newsletter. 2019; 27 (2): 19–23. DOI: 10.20340/mv-mn.19(27).02.19-23. Russian.
  2. Matkina OV. Patogeneticheskie izmeneniya v timuse i selezenke neinbrednykh belykh krys pri ostrom stresse. Permskiy meditsinskiy zhurnal. 2014; 31 (1): 121–8. Russian.
  3. Buzinaeva MT. Immunomorfologicheskaya kharakteristika limfoidnoy tkani gortani pri vozdeystvii nizkikh prirodnykh temperatur [dissertation]. Ul'yanovsk, 2013. Russian.
  4. Devonaev OT. Strukturno-funktsional'nye kharakteristiki i osobennosti morfogeneza limfoidnogo apparata mochevyvodyashchikh putey v norme i pri vozdeystvii kholodovogo stressa i vysokogor'ya [dissertation]. Novosibirsk, 2007. Russian.
  5. Gosudarstvennyy doklad «O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Arkhangel'skoy oblasti v 2022 godu». Arkhangel'sk, 2023. Russian.
  6. Ob itogakh raboty Ministerstva zdravookhraneniya Rossiyskoy Federatsii v 2022 godu i zadachakh na 2023 god. M.: Ministerstvo zdravookhraneniya Rossiyskoy Federatsii, 2023. Russian.
  7. Krasilnikov SV. Analysis of tendencies of population morbidity of Arkhangelsk region as a result of diseases of blood circulation system as the basis of cardiac-surgery organization. International Research Journal. 2017;5–2 (59). С. 145–7. DOI: 10.23670/IRJ.2017.59.077. Russian.
  8. Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int. 2020; 44 (9): 1792–7. DOI: 10.1002/cbin.11403.
  9. Dobrodeeva LK. Immunologicheskoe rayonirovanie. Syktyvkar: KNTs, 2004; 101 p. Russian.
  10. Dobrodeeva LK, Patrakeeva VP. Vliyanie migratsionnykh i proliferativnykh protsessov limfotsitov na sostoyanie immunnogo fona cheloveka, prozhivayushchego v usloviyakh vysokikh shirot. Ekaterinburg: UrO RAN, 2018; 203 p. Russian.
  11. Gubkina LV, Samodova AV, Dobrodeeva LK. Distinctive aspects of the immune status of the kola Saami and Russians living in the far North. American Journal of Human Biology. 2023; 23969. DOI: 10.1002/ajhb.23969.
  12. Juravlyova OA, Markin AA, Kuzichkin DS, Saltuikova MM, Loginov VI, Zabolotskaya IV, et al. Features of Human Metabolic Reactions under Extreme Cold Exposure. Human Physiology. 2018; 44 (3): 109–15. DOI: 10.7868/S0131164618030128. Russian.
  13. De Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care. 2010; 14 (5): R192. DOI: 10.1186/cc9309.
  14. Kabak M, Çil B, Hocanlı I. Relationship between leukocyte, neutrophil, lymphocyte, platelet counts, and neutrophil to lymphocyte ratio and polymerase chain reaction positivity. International Immunopharmacology. 2021; 93: 107390. DOI: 10.1016/j.intimp.2021.107390.
  15. Sejópoles MD, Souza-Silva JP, Silva-Santos C, Paula-Duarte MM, Fontes CJF, Gomes LT. Prognostic value of neutrophil and lymphocyte counts and neutrophil/lymphocyte ratio for predicting death in patients hospitalized for COVID-19. Heliyon. 2023; 9 (6): e16964. DOI: 10.1016/j.heliyon.2023.e16964.
  16. Shusterman E, Prozan L, Ablin JN, Weiss-Meilik A, Adler A, Choshen G, et al. Neutrophil-to-lymphocyte ratio trend at admission predicts adverse outcome in hospitalized respiratory syncytial virus patients. Heliyon. 2023; 9 (6): e16482. DOI: 10.1016/j.heliyon.2023.e16482.
  17. Mehta S, Ketkar M, Jain DK. Role of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in predicting carcinoma prostate (CaP) in patients with lower urinary tract symptoms and raised serum prostate-specific antigen (sr.PSA). Medical Journal Armed Forces India. 2023. DOI: 10.1016/j.mjafi.2023.03.001.
  18. Yamashita M, Ojima N, Sakamoto T. Molecular cloning and cold-inducible gene expression of ferritin H subunit isoforms in rainbow trout cells. J Biol Chem. 1997; 271 (43): 26908–13. DOI: 10.1074/jbc.271.43.26908.
  19. Li M, Tang X, Liao Z, Shen C, Cheng R, Fang M, et al. Hypoxia and low temperature upregulate transferrin to induce hypercoagulability at high altitude. Blood. 2022; 140 (19): 2063–75. DOI: 10.1182/blood.2022016410.
  20. Tang X, Zhang Z, Fang M, Han Y, Wang G, Wang S, et al. Transferrin plays a central role in coagulation balance by interacting with clotting factors. Cell Res. 2020; 30 (2): 119–32. DOI: 10.1038/s41422-019-0260-6.
  21. Streltsova ЕI, Peshkova IV, Samatov IYu, Valeeva VА, Vereshchagin ЕI. Lymphopenia as a determinant factor of sepsis severity, as an exact diagnostic criterion, and as an object of therapy. Journal of Siberian Medical Sciences. 2020; 3: 108–25. DOI: 10.31549/2542-1174-2020-3-108-125. Russian.
  22. Osmanova AS, Amirov GN, Asadulayeva MN, Shakhbanov RK, Asadulayeva ZM. The effect of lymphopenia in COVID-19 patients on the severity of infection. Journal Technologies of Living Systems. 2022; 19 (1): 14–9. DOI: 10.18127/j20700997-202201-02. Russian.
  23. Abdullaev RYu, Komissarova OG. Changes in markers of hematological, biochemical and coagulological blood tests with coronavirus COVID-19 infections. Consilium Medicum. 2020; 22 (11): 51–5. Russian.
  24. Balashovа SN, Dobrodeeva LK. Influence of neutropenia on the state of the immune status in persons working on the Svalbard Archipelago. Vestn Ural Med Akad Nauki. 2019; 16 (2): 71–7. DOI: 10.22138/2500-0918-2019-16-2-71-77. Russian.
  25. Gubkina LV, Samodova AV, Dobrodeeva LK. Distinctive aspects of the immune status of the kola Saami and Russians living in the far North. American Journal of Human Biology. 2023; 23969. DOI: 10.1002/ajhb.23969.
  26. Lutsenko MM. Gas-transport metabolism in the peripheral blood at general cooling of the organism. Bulletin Physiology and Pathology of Respiration. 2012; 44: 85–9. Russian.
  27. Alekseev RZ, Golderova AS, Mamaeva SN, Platonova VA, Savvinova LN, Afanasyeva SS, et al. Main features of erythrocytes morphology in persons dead of hypothermia. International Research Journal. 2018; 12 (78): 169–72. DOI: 10.23670/IRJ.2018.78.12.030. Russian.
  28. Nagibovich OA, Ukhovsky DM, Zhekalov AN, Tkachuk NA, Arzhavkina LG, Bogdanova EG, et al. Mechanisms of hypoxia in Arctic zone of Russian Federation. Bulletin of the Russian Military Medical Academy. 2016; 2 (54): 202–5. Russian.
  29. Kunitsyn VG, Panin LE, Osipova LP, Tabikhanova LE, Churkina TV, Rozumenko AA. Izmenenie struktury gemoglobina v ekstremal'nykh usloviyakh Arktiki. Journal of Ural Medical Academic Science. 2014; 2 (48): 37–9. Russian.
  30. Kim LB. Transport kisloroda pri adaptatsii cheloveka k usloviyam Arktiki i kardiorespiratornoy patologii. Novosibirsk: Nauka, 2015; 216 p. Russian.
  31. Kim LB. Vliyanie polyarnogo stazha na kislorodotransportnuyu funktsiyu krovi u severyan razlichnogo vozrasta. Arktika i Sever. 2014; 17: 150–62. Russian.
  32. Ozawa T, Asakura T, Chubachi S, Namkoong H, Tanaka H, Lee K, et al. Use of the neutrophil-to-lymphocyte ratio and an oxygen requirement to predict disease severity in patients with COVID-19. Respiratory Investigation. 2023; 61 (4): 454–9. DOI: 10.1016/j.resinv.2023.03.007.
  33. Vliora M, Grillo E, Corsini M, Ravelli C, Nintou E, Karligiotou E, et al. Irisin regulates thermogenesis and lipolysis in 3T3-L1 adipocytes. Biochimica et Biophysica Acta (BBA). 2022; 1866 (4): 130085. DOI: 10.1016/j.bbagen.2022.130085.
  34. Gheit REAE, Younis RL, El-Saka MH, Emam MN, Soliman NA, El-Sayed RM, et al. Irisin improves adiposity and exercise tolerance in a rat model of postmenopausal obesity through enhancing adipo-myocyte thermogenesis. J Physiol Biochem. 2022; 78 (4): 897–913. DOI: 10.1007/s13105-022-00915-3.
  35. Blankenhaus B, Braza F, Martins R, Bastos-Amador P, GonzálezGarcía I, Carlos AR, et al. Ferritin regulates organismal energy balance and thermogenesis. Molecular Metabolism. 2019; 24: 64–79. DOI: 10.1016/j.molmet.2019.03.008.