ОБЗОР

Структурные и функциональные изменения в головном мозге космонавтов под влиянием микрогравитации

К. В. Латарцев1,2, П. Н. Демина1, В. А. Яшина1,2, Р. Р. Каспранский1
Информация об авторах

1 Федеральный научно-клинический центр космической медицины Федерального медико-биологического агентства, Москва, Россия

2 Московский государственный университет имени М. В. Ломоносова, Москва, Россия

Для корреспонденции: Константин Владимирович Латарцев
ул. Щукинская, д. 5, ст. 2, г. Москва, 123182, Россия; moc.liamg@vestratal.k

Информация о статье

Финансирование: обзор выполнен за счет средств, предоставленных для выполнения государственного задания «Структурные и функциональные изменения головного мозга человека и их влияние на операторскую деятельность на различных сроках адаптации к условиям моделированной микрогравитации» (шифр «Церебрум-А»).

Вклад авторов: К. В. Латарцев — анализ источников, написание текста, редактирование; П. Н. Демина — поиск источников, анализ источников; В. А. Яшина — поиск источников, анализ источников; Р. Р. Каспранский — разработка концепции, поиск источников, редактирование рукописи.

Статья получена: 19.01.2024 Статья принята к печати: 07.02.2024 Опубликовано online: 03.06.2024
|
  1. Rabin R, et al. Effects of spaceflight on the musculoskeletal system: NIH and NASA future directions. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1993; 7 (5): 396–8.
  2. Demertzi A, et al. Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Structure and function. 2016; 221: 2873–6.
  3. Рюмин О. О. Вопросы психологического обеспечения пилотируемых межпланетных полетов. Авиакосм. и экол. мед. 2017; 51 (4): 15.
  4. Nasrini J, et al. Cognitive performance in long-duration Mars simulations at the Hawaii space exploration analog and simulation (HI-SEAS). NASA Human Research Program Investigators’ Workshop. 2017; 1–2.
  5. Nelson ES, Mulugeta L, Myers JG. Microgravity-induced fluid shift and ophthalmic changes. Life. 2014; 4 (4): 621–65.
  6. Roberts DR, et al. Effects of spaceflight on astronaut brain structure as indicated on MRI. New England Journal of Medicine. 2017; 377 (18): 1746–53.
  7. Van Ombergen A, et al. Brain tissue–volume changes in cosmonauts. New England Journal of Medicine. 2018; 379 (17): 1678–80.
  8. Van Ombergen A, et al. Brain ventricular volume changes induced by long-duration spaceflight. Proceedings of the National Academy of Sciences. 2019; 116 (21): 10531–6.
  9. Lee JK, et al. Spaceflight-associated brain white matter microstructural changes and intracranial fluid redistribution. JAMA neurology. 2019; 76 (4): 412–9.
  10. Kramer LA, et al. Intracranial effects of microgravity: a prospective longitudinal MRI study. Radiology. 2020; 295 (3): 640–8.
  11. Hupfeld KE, et al. Longitudinal MRI-visible perivascular space (PVS) changes with long-duration spaceflight. Scientific Reports. 2022; 12 (1): 7238.
  12. McGregor HR, et al. Impacts of spaceflight experience on human brain structure. Scientific Reports. 2023; 13 (1): 7878.
  13. Карпенко М. П., Давыдов Д. Г., Чмыхова Е. В. Обучение экипажей в ходе длительных космических полетов как средство поддержания социализации и когнитивных способностей космонавтов. Авиакосмическая и экологическая медицина. 2018; 52 (6): 19–25.
  14. Kanas N, et al. Psychology and culture during long-duration space missions. Springer Berlin Heidelberg. 2013; 153–84.
  15. Jamšek M, et al. Effects of simulated microgravity and hypergravity conditions on arm movements in normogravity. Frontiers in Neural Circuits. 2021; 15: 750176.
  16. Seidler RD, et al. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Frontiers in Neural Circuits. 2022; 16: 876789.
  17. Kunavar T, et al. Effects of local gravity compensation on motor control during altered environmental gravity. Frontiers in Neural Circuits. 2021; 15: 750267.
  18. Tays GD, et al. The effects of long duration spaceflight on sensorimotor control and cognition. Frontiers in neural circuits. 2021; 15: 723504.
  19. Strangman GE, Sipes W, Beven G. Human cognitive performance in spaceflight and analogue environments. Aviation, space, and environmental medicine. 2014; 85 (10): 1033–48.
  20. Cassady K, et al. Effects of a spaceflight analog environment on brain connectivity and behavior. Neuroimage. 2016; 141: 18–30.
  21. Stella AB, et al. Neurophysiological adaptations to spaceflight and simulated microgravity. Clinical Neurophysiology. 2021; 132 (2): 498–504.
  22. Koppelmans V, et al. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases. BMC neurology. 2013; 13: 1–15.
  23. Doroshin A, et al. Brain connectometry changes in space travelers after long-duration spaceflight. Frontiers in neural circuits. 2022; 16: 6.
  24. Koppelmans V, et al. Brain structural plasticity with spaceflight. npj Microgravity. 2016: 2 (1): 2.
  25. Jillings S, et al. Macro-and microstructural changes in cosmonauts’ brains after long-duration spaceflight. Science advances. 2020; 6 (36): eaaz9488.
  26. Jillings S, et al. Prolonged microgravity induces reversible and persistent changes on human cerebral connectivity. Communications Biology. 2023; 6 (1): 46.
  27. Pechenkova E, et al. Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Frontiers in Physiology. 2019; 10: 761.
  28. Li K, et al. Effect of simulated microgravity on human brain gray matter and white matter–evidence from MRI. PloS one. 2015; 10 (8): e0135835.
  29. Salazar AP, et al. Changes in working memory brain activity and task-based connectivity after long-duration spaceflight. Cerebral Cortex. 2023; 33 (6): 2641–54.
  30. Van Ombergen A, et al. Intrinsic functional connectivity reduces after first-time exposure to short-term gravitational alterations induced by parabolic flight. Scientific Reports. 2017; 7 (1): 3061.
  31. Koppelmans V, et al. Brain plasticity and sensorimotor deterioration as a function of 70 days head down tilt bed rest. PloS one. 2017; 12 (8): e0182236.
  32. Miller AD, et al. Human Cortical Activity during Vestibular‐and Drug‐Induced Nausea Detected Using MSI a. Annals of the New York Academy of Sciences. 1996; 781 (1): 670–2.
  33. Mammarella N. The effect of microgravity-like conditions on high-level cognition: a review. Frontiers in Astronomy and Space Sciences. 2020; 7: 6.
  34. Garrett-Bakelman FE, et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science. 2019; 364 (6436): eaau8650.
  35. Cullen KE. Vestibular processing during natural self-motion: implications for perception and action. Nature Reviews Neuroscience. 2019; 20 (6): 346–63.
  36. Carriot J, Mackrous I, Cullen KE. Challenges to the vestibular system in space: how the brain responds and adapts to microgravity. Frontiers in neural circuits. 2021; 15: 760313.
  37. Kowiański P, et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and molecular neurobiology. 2018; 38: 579–93.
  38. Silhol M, et al. Spatial memory training modifies the expression of brain-derived neurotrophic factor tyrosine kinase receptors in young and aged rats. Neuroscience. 2007; 146 (3): 962–73.
  39. Okamoto M, et al. High-intensity intermittent training enhances spatial memory and hippocampal neurogenesis associated with BDNF signaling in rats. Cerebral Cortex. 2021; 31 (9): 4386–97.
  40. Каминская А. Н. и др. Обучение и формирование памяти в сопоставлении с распределением pCREB и белковых агрегатов в нейромышечных контактах у Drosophila melanogaster при полиморфизме limk1. Генетика. 2015; 51 (6): 685.
  41. Lin CY, et al. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells. Biochemical pharmacology. 2014; 91 (4): 522–33.
  42. El-Sayes J, et al. Exercise-induced neuroplasticity: a mechanistic model and prospects for promoting plasticity. The Neuroscientist. 2019; 25 (1): 65–85.
  43. Guillon L, et al. Reduced Regional Cerebral Blood Flow Measured by 99mTc-Hexamethyl Propylene Amine Oxime Single-Photon Emission Computed Tomography in Microgravity Simulated by 5-Day Dry Immersion. Frontiers in Physiology. 2021; 12: 789298.
  44. Ogoh S, et al. Internal carotid, external carotid and vertebral artery blood flow responses to 3 days of head‐out dry immersion. Experimental Physiology. 2017; 102 (10): 1278–87.
  45. Stahn AC, et al. Brain changes in response to long Antarctic expeditions. New England Journal of Medicine. 2019; 381 (23): 2273-5.
  46. Mahadevan AD, et al. Head-down-tilt bed rest with elevated CO2: effects of a pilot spaceflight analog on neural function and performance during a cognitive-motor dual task. Frontiers in Physiology. 2021; 12: 654906.
  47. Luxton JJ, et al. Telomere length dynamics and DNA damage responses associated with long-duration spaceflight. Cell Reports. 2020; 33 (10): 108457.