ОБЗОР

Sars-CoV-2 в контексте коронавирусов и животные модели для изучения COVID-19

А. А. Коренькова, В. В. Бахметьев, К. С. Горбунов
Информация об авторах

Федеральный научно-клинический центр физико-химической медицины Федерального медико-биологического агентства, Москва, Россия

Для корреспонденции: Константин Сергеевич Горбунов
ул. Малая Пироговская, 1а, г. Москва, 119435; gro.mcpcr@vonubrog.nitnatsnok

Информация о статье

Вклад авторов: А. А. Коренькова — сбор информации, написание статьи, редактирование; В. В. Бахметьев — сбор информации, написание статьи; К. С. Горбунов — общее руководство.

Статья получена: 14.10.2020 Статья принята к печати: 11.11.2020 Опубликовано online: 29.11.2020
|
  1. Dhama K, Patel SK, Sharun K, Pathak M, Tiwari R, Yatoo MI, et al. SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Med Infect Dis. 2020 Aug 2; 37: 101830.
  2. Killerby ME, Biggs HM, Haynes A, Dahl RM, Mustaquim D, Gerber SI, et al. Human coronavirus circulation in the United States 2014- 2017. J Clin Virol. 2018 Apr; 101: 52–6.
  3. Al-Khannaq MN, Takebe Y, Pang YK, Oong XY, Tee KK, Ng KT, et al. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia [Internet]. The American Journal of Tropical Medicine and Hygiene. 2016. 94: 1058–64. Available from: http://dx.doi.org/10.4269/ajtmh.15-0810.
  4. Глыбочко П. В., Фомин В. В., Авдеев С. Н., Моисеев С. В., Яворовский А. Г., Бровко М. Ю. и др. Клиническая характеристика 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респираторной поддержке [Internet]. Журнал Клиническая фармакология и терапия; 2020 [cited 2020 Sep 23]. Available from: https://clinpharm-journal.ru/articles/2020-2/klinicheskaya-harakteristika-1007- bolnyh-tyazheloj-sars-cov-2-pnevmoniej-nuzhdavshihsya-v-respiratornoj-podderzhke/.
  5. Mohseni AH, Taghinezhad-S S, Xu Z, Fu X. Body fluids may contribute to human-to-human transmission of severe acute respiratory syndrome coronavirus 2: evidence and practical experience. Chin Med. 2020 Jun 5; 15: 58.
  6. Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol. 2020 Jun; 5 (6): 533–4.
  7. Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019 [Internet]. JAMA Network Open. 2020; 3: e208292. Available from: http://dx.doi.org/10.1001/jamanetworkopen.2020.8292.
  8. Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement [Internet]. Stem Cell Reviews and Reports. 2020; 16: 434–40. Available from: http://dx.doi.org/10.1007/s12015-020-09976-7.
  9. Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 2020 May; 80 (5): 554–62.
  10. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020 Apr 23; 382 (17): 1653–9.
  11. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020 May 12; 323 (18): 1824–36.
  12. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16; 181 (2): 271–80.e8.
  13. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020 Jul; 16 (7): e9610.
  14. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020 Apr; 26 (4): 450–2.
  15. Leroy EM, Ar Gouilh M, Brugère-Picoux J. The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health. 2020 Apr 13; 100133.
  16. Dearlove B, Lewitus E, Bai H, Li Y, Reeves DB, Joyce MG, et al. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci U S A [Internet]. 2020 Aug 31; Available from: http://dx.doi.org/10.1073/pnas.2008281117.
  17. Stefanyuk OV, Lazebnik LB. The defeat of the digestive system during infection SARS-CoV-2. Eksp Klin Gastroenterol. 2020 Mar; 175 (3): 4–9.
  18. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019 Mar; 17 (3): 181–92.
  19. Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1; 1866 (10): 165878.
  20. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018 Feb 16; 100: 163–88.
  21. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol [Internet]. 2020 Mar 17; 94 (7). Available from: http://dx.doi. org/10.1128/JVI.00127-20.
  22. Tiwari R, Dhama K, Sharun K, Iqbal Yatoo M, Malik YS, Singh R, et al. COVID-19: animals, veterinary and zoonotic links. Vet Q. 2020 Dec; 40 (1): 169–82.
  23. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses [Internet]. Trends in Microbiology. 2016; 24: 490–502. Available from: http://dx.doi.org/10.1016/j.tim.2016.03.003.
  24. Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, et al. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. J Virol [Internet]. 2017 Mar 1; 91 (5). Available from: http:// dx.doi.org/10.1128/JVI.01953-16.
  25. Abdel-Moneim AS, Abdelwhab EM. Evidence for SARS-CoV-2 Infection of Animal Hosts. Pathogens [Internet]. 2020 Jun 30; 9 (7). Available from: http://dx.doi.org/10.3390/pathogens9070529.
  26. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017 Jun 29; 546 (7660): 646–50.
  27. Hu B, Ge X, Wang L-F, Shi Z. Bat origin of human coronaviruses. Virol J. 2015 Dec 22; 12: 221.
  28. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis [Internet]. Journal of Infection. 2020; 81: 266–75. Available from: http:// dx.doi.org/10.1016/j.jinf.2020.05.046.
  29. Lai C-C, Wang C-Y, Hsueh P-R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti- SARS-CoV-2 agents? J Microbiol Immunol Infect. 2020 Aug; 53 (4): 505–12.
  30. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr; 5 (4): 536–44.
  31. Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses [Internet]. Current Opinion in Virology. 2015; 13: 123–9. Available from: http://dx.doi.org/10.1016/j. coviro.2015.06.009.
  32. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight [Internet]. Viruses. 2019; 11: 59. Available from: http://dx.doi.org/10.3390/ v11010059.
  33. Singh A, Singh RS, Sarma P, Batra G, Joshi R, Kaur H, et al. A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin. 2020 Jun; 35 (3): 290–304.
  34. Martina BEE, Haagmans BL, Kuiken T, Fouchier RAM, Rimmelzwaan GF, Van Amerongen G, et al. Virology: SARS virus infection of cats and ferrets. Nature. 2003 Oct 30; 425 (6961): 915.
  35. Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 2020 May 29; 368 (6494): 1016–20.
  36. Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van der Honing RW, et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill [Internet]. 2020 Jun; 25 (23). Available from: http://dx.doi. org/10.2807/1560-7917.ES.2020.25.23.2001005.
  37. Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell P-S, Balta XR, Albrecht RA, et al. Animal models for COVID-19. Nature [Internet]. 2020 Sep 23; Available from: http://dx.doi.org/10.1038/s41586- 020-2787-6.
  38. Roberts A, Subbarao K. Animal models for SARS. Adv Exp Med Biol. 2006; 581: 463–71.
  39. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci USA. 2020 Jul 14; 117 (28): 16587–95.
  40. de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T, Lackemeyer MG, et al. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLoS One. 2013 Jul 2; 8 (7): e69127.
  41. Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020 Jul; 583 (7818): 830–3.
  42. Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, et al. COVID-19: viral–host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J Transl Med. 2020 Jun 10; 18 (1): 233.
  43. Crameri G, Durr PA, Klein R, Foord A, Yu M, Riddell S, et al. Experimental Infection and Response to Rechallenge of Alpacas with Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis. 2016 Jun; 22 (6): 1071–4.