Evaluation of efficacy of the amino acid-peptide complex administered intragastrically to golden hamsters experimentally infected with SARS-CoV-2

Laptev DS1, Protasova GA1, Petunov SG1, Radilov AS1, Chepur SV2, Gogolevskiy AS2, Myasnikov VA2, Tyunin MA2, Smirnova AV2
About authors

1 Research Institute of Hygiene, Occupational Pathology and Human Ecology Leningrad Region, Russia

2 State Research and Testing Military Medicine Institute under the Ministry of Defense of the Russian Federation, St. Petersburg, Russia

Correspondence should be addressed: Denis S. Laptev
stancija Kapitolovo, stroenie 93, r.p. Kuzmolovsky, Vsevolozhsky r., 188663; ur.liam@nedpal

About paper

Author contribution: Laptev DS, Protasova GA, Myasnikov VA, Tyunin MA, Smirnova AV — experiment, information collection, data processing; Petunov SG — data processing and interpretation; Radilov AS — scientific concept, consulting; Chepur SV — experiment organization, COVID-19 in vivo model development; Gogolevskiy AS — experiment organization. All authors participated in the manuscript authoring and editing.

Compliance with ethical standards: the study was conducted in conformity to the provisions of the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes.

Received: 2021-05-21 Accepted: 2021-06-06 Published online: 2021-06-16

The development of coronavirus infection outbreak into a pandemic, coupled with the lack of effective COVID-19 therapies, is a challenge for the entire pharmaceutical industry. This study aimed to assess the treatment and preventive efficacy of the amino acid-peptide complex (APC) in male Syrian hamsters infected with SARSCoV-2 (intranasal administration of 26 μl of the virus culture, titer of 4 × 104 TCD50/ml). In a modeled COVID-19 case, APC administered for treatment and preventive purposes reduced lung damage. Compared to the positive control group, test group had the lung weight factor 15.2% smaller (trend), which indicates a less pronounced edema. Microscopic examination revealed no alveolar edema, atypical hypertrophied forms of type II alveolocytes, pulmonary parenchyma fibrinization. The macrophage reaction intensified, which is probably a result of the APC-induced activation of regenerative processes in the lung tissues. Spleens of the animals that received APC for therapeutic and preventive purposes were less engorged and had fewer hemorrhages. The decrease of body weight of the test animals that received APC for treatment and prevention was insignificant (p < 0.05), which indicates a less severe course of COVID-19. Administered following a purely therapeutic protocol, APC proved ineffective against SARS-CoV-2 post-infection. Thus, APC-based drug used as a therapeutic and preventive agent reduces pulmonary edema and makes morphological signs of lung tissue damage less pronounced in male Syrian hamsters infected with SARS-CoV-2.

Keywords: COVID-19, pulmonary edema, atypical pneumocytes, Syrian hamsters