ОБЗОР

Механизмы участия B-лимфоцитов в патогенезе рассеянного склероза

М. В. Мельников1,2,3, В. С. Роговский1,2, А. В. Лопатина1,2, А. А. Свиридова1,2, А. И. Волков1, А. Н. Бойко1,2
Информация об авторах

1 Федеральный центр мозга и нейротехнологий Федерального медико-биологического агентства, Москва, Россия

2 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

3 Институт иммунологии Федерального медико-биологического агентства, Москва, Россия

Для корреспонденции: Михаил Валерьевич Мельников
ул. Островитянова, д. 1, г. Москва, 117997; ur.xednay@smkidem

Информация о статье

Вклад авторов: М. В. Мельников — написание и редактирование рукописи; В. С. Роговский М, А. В. Лопатина, А. И. Волков — написание рукописи; А. А. Свиридова — написание и форматирование рукописи; А. Н. Бойко — концепция и дизайн исследования, редактирование рукописи

Статья получена: 17.07.2021 Статья принята к печати: 06.08.2021 Опубликовано online: 16.08.2021
|
  1. Boyko A, Melnikov M. Prevalence and incidence of multiple sclerosis in Russian Federation: 30 years of studies. Brain Sci. 2020 May 18; 10 (5): 305. DOI: 10.3390/brainsci10050305.
  2. Kamali AN, Noorbakhsh SM, Hamedifar H, Jadidi-Niaragh F, Yazdani R, Bautista JM, et al. A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol. 2019 Jan; 105: 107–15. DOI: 10.1016/j. molimm.2018.11.015.
  3. Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019 Dec 23; 16 (1): 272. DOI: 10.1186/s12974-019-1674-2.
  4. Milo R. Therapies for multiple sclerosis targeting B cells. Croat Med J. 2019 Apr 30; 60 (2): 87–98. DOI: 10.3325/cmj.2019.60.87.
  5. Corfe SA, Paige CJ. The many roles of IL7 in B cell development; mediator of survival, proliferation and differentiation. Semin Immunol. 2012; 24 (3), 198–208. DOI: 10.1016/j.smim.2012.02.001.
  6. Bemark M. Translating transitions — how to decipher peripheral human B cell development. J Biomed Res. 2015; 29 (4): 264–84. DOI: 10.7555/JBR.29.20150035.
  7. Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol 3. 2012; 302. DOI: 10.3389/fimmu.2012.00302.
  8. Khodadadi L, Cheng Q, Radbruch A, Hiepe F. The maintenance of memory plasma cells. Front Immunol 10. 2019; 721. DOI: 10.3389/fimmu.2019.00721.
  9. Pavlasova G, Mraz M. The regulation and function of CD20: an "enigma" of B-cell biology and targeted therapy. Haematologica. 2020; 105 (6): 1494–506. DOI: 10.3324/haematol.2019.243543.
  10. Palm AE, Henry C. Remembrance of things past: long-term B cell memory after infection and vaccination. Front Immunol. 2019; 10: 1787. DOI: 10.3389/fimmu.2019.01787.
  11. Luz EC, Damaris EL. "Introduction to T and B lymphocytes," in autoimmunity: from bench to bedside. El Rosario University Press, 2013.
  12. Adachi Y, Onodera T, Yamada Y, Daio R, Tsuiji M, Inoue T, et al. Distinct germinal center selection at local sites shapes memory B cell response to viral escape. J Exp Med. 2015; 212 (10), 1709– 23. DOI: 10.1084/jem.20142284.
  13. Quinn JL, Kumar G, Agasing A, Ko RM, Axtell RC. Role of TFH cells in promoting T helper 17-induced neuroinflammation. Front Immunol. 2018; 9: 382. DOI: 10.3389/fimmu.2018.00382.
  14. Atisha-Fregoso Y, Zou YR, Diamond B. "B cells and generation of antibodies". In: Dubois' Lupus Erythematosus and Related Syndromes. Elsevier, 2019; 101–15.
  15. Sospedra M. B cells in multiple sclerosis. Curr Opin Neurol. 2018; 31 (3): 256–262. DOI: 10.1097/WCO.000000000000563.
  16. Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, et al. The other function: class II-restricted antigen presentation by B cells. Front Immunol. 2017; 8: 319. DOI: 10.3389/ fimmu.2017.00319.
  17. Hausser-Kinzel S, Weber MS. The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders. Front Immunol. 2019; 10: 201. DOI: 10.3389/fimmu.2019.00201.
  18. Barr TA, Shen P, Brown S, Lampropoulou V, Roch T, Lawrie S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL6-producing B cells. J Exp Med. 2012; 209 (5): 1001–10. DOI: 10.1084/jem.20111675.
  19. Yu X, Graner M, Kennedy PGE, Liu Y. The role of antibodies in the pathogenesis of multiple sclerosis. Front Neurol. 2020; 11: 533388. DOI: 10.3389/fneur.2020.533388.
  20. Negron A, Stüve O, Forsthuber TG. Ectopic lymphoid follicles in multiple sclerosis: Centers for Disease Control. Front Neurol. 2020 Dec 8; 11: 607766. DOI: 10.3389/fneur.2020.607766.
  21. Bell L, Lenhart A, Rosenwald A, Monoranu CM, Berberich-Siebelt F. Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells. Front Immunol. 2020 Jan 15; 10: 3090. DOI: 10.3389/fimmu.2019.03090.
  22. Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation. 2019 Dec 23; 16 (1): 272. DOI: 10.1186/s12974-019-1674-2.
  23. Schwenkenbecher P, Konen FF, Wurster U, Jendretzky KF, Gingele S, Sühs KW, et al. The persisting significance of oligoclonal bands in the dawning era of kappa free light chains for the diagnosis of multiple sclerosis. Int J Mol Sci. 2018 Nov 29; 19 (12): 3796. DOI: 10.3390/ijms19123796.
  24. Lefvert A, Link H. IgG production within the central nervous system: a critical review of proposed formulae. Ann Neurol. 1985; 17: 13–20. DOI: 10.1002/ana.410170105.
  25. Tintore M, Rovira À, Río J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015 Jul; 138 (Pt 7): 1863– 74. DOI: 10.1093/brain/awv105.
  26. Kuhle J, Disanto G, Dobson R, et al. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Mult Scler. 2015; 21 (8): 1013–24.
  27. Lebrun-Frenay C, Kantarci O, Siva A, Sormani MP, Pelletier D, Okuda DT. 10-year RISC study group on behalf of SFSEP, OFSEP. Radiologically isolated syndrome: 10-year risk estimate of a clinical event. Ann Neurol. 2020 Aug; 88 (2): 407–17. DOI: 10.1002/ana.25799.
  28. Hor JY, Asgari N, Nakashima I, Broadley SA, Leite MI, Kissani N, et al. Epidemiology of neuromyelitis optica spectrum disorder and its prevalence and incidence worldwide. Front Neurol. 2020 Jun 26; 11: 501. DOI: 10.3389/fneur.2020.00501.
  29. Greenfield AL, Hauser SL. B-cell therapy for multiple sclerosis: entering an era. Ann Neurol. 2018 Jan; 83 (1): 13–26. DOI: 10.1002/ana.25119.
  30. Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. E Bio Medicine. 2017; 16: 41–50.
  31. Bose T. Role of immunological memory cells as a therapeutic target in multiple sclerosis. Brain Sci. 2017; 7 (11): E148.
  32. Ciron J, Audoin B, Bourre B, Brassat D, Durand-Dubief F, Laplaud D, et al. NOMADMUS group, under the aegis of OFSEP, SFSEP. Recommendations for the use of Rituximab in neuromyelitis optica spectrum disorders Rev Neurol (Paris). 2018; 174 (4): 255–64.
  33. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ. Repeated treatment with rituximab based on the assessment of peripheral circulating memory B cells in patients with relapsing neuromyelitis optica over 2 years. Arch Neurol. 2011; 68, 1412–20.
  34. Kim SH, Jeong IH, Hyun JW, Joung A, Jo HJ, Hwang SH, et al. Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab. JAMA Neurol. 72: 989–95.
  35. Kim SH, Huh SY, LeeSJ, Joung A, Kim HJ. A5-yearfollow-up ofrituximab treatment in patients with neuromyelitis optica spectrum disorder. JAMA Neurol. 2013; 70: 1110–7.
  36. Thompson SA, Jones JL, Cox AL, et al. B-cell reconstitution and BAFF after alemtuzumab (CAMPATH-1H) treatment of multiple sclerosis. J Clin Immunol. 2010; 30: 99–105.
  37. Duddy M, Niino M, Adatia F, et al. Distincteffectorcytokineprofil esofmemoryand naive human B cell subsets and implication in multiple sclerosis. J Immunol. 2007; 178: 6092–9.
  38. Giovannoni G, Cohen JA, Coles AJ, Hartung HP, Havrdova E, Selmaj KW, et al. CARE-MS II Investigators. Alemtuzumab improves preexisting disability in active relapsing-remitting MS patients. Neurology. 2016 Nov 8; 87 (19): 1985–92.
  39. Van Oosten BW, Lai M, Hodgkinson S, et al. Treatmentofmultiple sclerosiswith the monoclonal anti-CD4 antibody cM-T412:results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology. 1997; 49: 351–7.
  40. Ceronie B, Jacobs BM, Baker D, Dubuisson N, Mao Z, Ammoscato F, et al. Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells. J Neurol. 2018 May; 265 (5): 1199–209.
  41. Giovannoni G, Cohen JA, Coles AJ, Hartung HP, Havrdova E, Selmaj KW, et al. CARE-MS II Investigators. Alemtuzumab improves preexisting disability in active relapsing-remitting MS patients. Neurology. 2016 Nov 8; 87 (19): 1985–92.
  42. Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, et al. CARE-MS I and CAMMS03409 Investigators. Alemtuzumab CARE-MS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy. Neurology. 2017 Sep 12; 89 (11): 1107–16. Neurology. 2018 Apr 17; 90 (16): 755.
  43. Genovese MC, Kaine JL, Lowenstein MB, et al. Ocrelizumab, a humanized antiCD20 monoclonalantibody, inthe treatment of patients with rheumatoidarthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum. 2008; 58: 2652–61.
  44. Kuerten S, Jackson LJ, Kaye J, Vollmer TL. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs. 2018; 32 (11): 1039–51.
  45. Begum-Haque S, Christy M, Ochoa-Reparaz J, Nowak EC, Mielcarz D, Haque A, et al. Augmentation of regulatory B cell activity in experimental allergic encephalomyelitis by glatiramer acetate. J Neuroimmunol. 2011 Mar; 232 (0): 136–44.
  46. Ireland SJ, Guzman AA, O Brien DE, Hughes S, Greenberg B, Flores A, et al. The effect of glatiramer acetate therapy on functional properties of B cells from patients with relapsing-remitting multiple sclerosis. JAMA Neurol. 2014 Nov; 71 (11): 1421–8.
  47. Schubert RD, Hu Y, Kumar G, Szeto S, Abraham P, Winderl J, et al. Interferon-β treatment requires B cells for efficacy in neuroautoimmunity. J Immunol. 2015 Mar 1; 194 (5): 2110–6.
  48. Ramgolam VS, Sha Y, Marcus KL, Choudhary N, Troiani L, Chopra M, et al. B cells as a therapeutic target for IFN-β in relapsing– remitting multiple sclerosis. J Immunol. 2011; 186 (7): 4518–26.
  49. Sabatino JJ, Zamvil SS, Hauser SL. B-cell therapies in multiple sclerosis. Cold Spring Harb Perspect Med. 2019 Feb; 9 (2): a032037.
  50. Lehmann-Horn K, Kinzel S, Weber MS. Deciphering the role of B cells in multiple sclerosis-towards specific targeting of pathogenic function. Int J Mol Sci. 2017 Oct; 18 (10): 2048.
  51. Gregson A, Thompson K, Tsirka SE, Selwood DL. Emerging small-molecule treatments for multiple sclerosis: focus on B cells. F1000Res. 2019; 8: F1000 Faculty Rev-245.
  52. Braley TJ, Segal BM. B-cell targeting agents in the treatment of multiple sclerosis. Curr Treat Options Neurol. 2013 Jun; 15 (3): 259–69.
  53. Traub JW, Häusser-Kinzel S, Weber MS. Differential effects of MS therapeutics on B cells-implications for their use and failure in AQP4-positive NMOSD patients. Int J Mol Sci. 2020 Jul; 21 (14): 5021.
  54. Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V. B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions. Front Immunol. 2015; 6: 642.
  55. Traub JW, Pellkofer HL, Grondey K, Seeger I, Rowold C, Brück W, et al. Natalizumab promotes activation and pro-inflammatory differentiation of peripheral B cells in multiple sclerosis patients. J Neuroinflammation. 2019; 16: 228.
  56. Häusler D, Häusser-Kinzel S, Feldmann L, Torke S, Lepennetier G, Bernard CCA, et al. Functional characterization of reappearing B cells after anti-CD20 treatment of CNS autoimmune disease. Proc Natl Acad Sci USA. 2018 Sep 25; 115 (39): 9773–8.
  57. Fernández-Velasco JI, Kuhle J, Monreal E, et al. Effect of ocrelizumab in blood leukocytes of patients with primary progressive MS. Neurol Neuroimmunol Neuroinflamm. 2021 Mar; 8 (2): e940.