ORIGINAL RESEARCH

Isolation and characterization of Pseudomonas aeruginosa bacteriophages — potential agents for phage therapy

About authors

Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia

Correspondence should be addressed: Maria A. Kornienko
Malaya Pirogovskaya, 1a, Moscow, 119435; moc.liamg@ayiramokneinrok

About paper

Funding: The study was supported by the State Assignment on the Development of a personalized approach to the therapy of infections using virulent bacteriophages (Code: Bacteriophage) (Russia).

Acknowledgments: the authors thank the Center for Precision Genome Editing and Genetic Technologies for Biomedicine, the Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency for their help with sequencing the genomes of bacteriophages.

Author contribution: Kornienko MA — study plan, data collection and processing, article authoring; Kuptsov NS — data collection and processing, article authoring; Danilov DI, Gorodnichev RB, Malakhova MV, Veselovsky VA — data collection; Bespiatykh DA — data processing, Shitikov EA — research plan, data processing, article authoring; Ilina EN — research plan, article authoring.

Compliance with ethical standards: the experiment was carried out in compliance with the Sanitary and Epidemiological Rules SP 1.3.2322-08 "Safe work with microorganisms of III–IV pathogenicity (hazardousness) groups and pathogens of parasitic diseases"; Sanitary and Epidemiological Rules SP 1.3.2518-09 "Amendments and additions #1 to the sanitary and epidemiological rules" Safe work with microorganisms of III–IV pathogenicity (hazardousness) groups and pathogens of parasitic diseases"; Sanitary and Epidemiological Rules SanPiN 2.1.7.2790-10 "Sanitary and epidemiological requirements for medical waste management"; Federal Clinical Recommendations "Rational use of bacteriophages in medical and anti-epidemic practice."

Received: 2021-07-19 Accepted: 2021-08-05 Published online: 2021-09-18
|
  1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnetet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018; 18 (3): 318–27.
  2. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, GómezZorrilla S, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019; 32 (4).
  3. Kuzmenkov AY, Trushin IV, Vinogradova AG, Avramenko AA, Sukhorukova MV, Malhotra-Kumar S, et al. AMRmap: an interactive web platform for analysis of antimicrobial resistance surveillance data in Russia. Front Microbiol. 2021; 12: 620002.
  4. Pena C, Cabot G, Gómez-Zorrilla S, Zamorano L, OcampoSosa A, Murillas J, et al. Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis. 2015; 60 (4): 539–48.
  5. 2020 Antibacterial agents in clinical and preclinical development: an overview and analysis. Geneva: World Health Organization, 2021. Available from: https://www.who.int/publications/i/ item/9789240021303.
  6. Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era. Clinical Microbiology Reviews. 2019; 32 (2): e00066-18. DOI: 10.1128/CMR.00066-18.
  7. Akimkin VG, Darbeeva OS, Kolkov VF. Bakteriofagi: istoricheskie i sovremennye aspekty ih primenenija: opyt i perspektivy. Klinicheskaja praktika. 2010; 1 (4): 48–54. Russian.
  8. Chen F, Cheng X, Li J, Yuan X, Huang X, Lian M, et al. Novel lytic phages protect cells and mice against Pseudomonas aeruginosa infection. J Virol. 2021; 95 (8): e01832-20. DOI: 10.1128/ JVI.01832-20.
  9. Jault P, Cheng X, Li J, Yuan X, Huang X, Lian M, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019; 19 (1): 35–45.
  10. Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018; 10 (7): 351. DOI: 10.3390/v10070351.
  11. Kuptsov NS, Kornienko MA, Gorodnichev RB, Danilov DI, Malakhova MV, Parfenova TV, et al. Efficacy of commercial bacteriophage products against ESKAPE pathogens. Bulletin of RSMU. 2020; (3): 18–24.
  12. Mazzocco A, et al. Enumeration of bacteriophages using the small drop plaque assay system. Methods Mol Biol. 2009; 501: 81–85.
  13. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Pr. 1989, 2200 p.
  14. Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. Oxford University Press. 2014; 30 (14): 2068–9.
  15. Aziz RK, et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. BioMed Central. 2008; 9: 75.
  16. Laslett D. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004; 32 (1): 11–16.
  17. Lefkowitz EJ, et al. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018: 46 (1): 708–17.
  18. Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017; 33 (21): 3396–404.
  19. Lefort V, Desper R, Gascuel O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol. 2015; 32 (10): 2798–800.
  20. FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/. (Data obrashhenija: 16.07.2021).
  21. Enright MC, et al. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000; 38 (3): 1008–15.
  22. Alvi IA, et al. RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa. Arch Virol. 2020. 165 (6): 1289–97.
  23. Farlow J, et al. Complete Genome Sequences of 10 Phages Lytic against Multidrug-Resistant Pseudomonas aeruginosa. Microbiol Resour. 2020. 9: 29.
  24. Alvi IA, Asif M, Rehman S. A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with multi drug resistant Pseudomonas aeruginosa. Virus Res. 2021; 292: 198250.
  25. Adnan M, et al. Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals. 2020; 63: 89–96.
  26. Treepong P, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect. 2018; 24 (3): 258–66.
  27. Principi N, Silvestri E, Esposito S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front Pharmacol. 2019; 10: 513.
  28. Guo Y, Chen P, Lin Z, Wang T. Characterization of Two Pseudomonas aeruginosa Viruses vB_PaeM_SCUT-S1 and vB_PaeM_SCUT-S2. Viruses. 2019; 11 (4): 318. DOI: 10.3390/ v11040318.
  29. Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, et al. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio. 2012; 3 (2): e00029-12. DOI: 10.1128/mBio.00029-12.
  30. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010; 201 (7): 1096–104.