ORIGINAL RESEARCH

Subpopulation composition of T-helpers in the peripheral blood of persons chronically exposed to radiation in the long term

About authors

1 Ural Research Center for Radiation Medicine, Chelyabinsk, Russia

2 Chelyabinsk State University, Chelyabinsk, Russia

Correspondence should be addressed: Alisa I. Kotikova
Vorovskogo, 68, str. A, Chelyabinsk, 454141, Russia; moc.liamg@asilaavokitok

About paper

Funding: the work was carried out as part of the "State of human cellular immunity against manifestation of the long-term effects of chronic exposure to radiation" State Task (code 27.002.20.800).

Author contribution: Kotikova AI — methodology development, laboratory research, statistical processing, article authoring; Blinova EA — methodology development, article authoring; Akleyev AV — development of the research concept, scientific supervision, article authoring.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Urals Research Center for Radiation Medicine (Minutes #1 of April 14, 2022). All participants signed a voluntary informed consent to participate in the study.

Received: 2022-04-15 Accepted: 2022-05-12 Published online: 2022-06-04
|
  1. Akleev AA, Blinova EA, Dolgushin II. TCR-mutacii v limfocitax perifericheskoj krovi i immunnyj status u lic, podvergshixsya xronicheskomu radiacionnomu vozdejstviyu, v otdalennye sroki. Rossijskij immunologicheskij zhurnal. 2019; 13 (22,1): 13–23. DOI: 10.31857/S102872210005016-2. Russian.
  2. Nalbant A. IL17, IL21, and IL22 Cytokines of T Helper 17 Cells in Cancer. J Interferon Cytokine Res. 2019; 39 (1): 56–60. DOI: 10.1089/jir.2018.0057.
  3. Akiyama M, Late effects of radiation on the human immune system: an overview of immune response among the atomicbomb survivors. Int J Radiat Biol. 1995; 68: 497–508.
  4. Heylmann D, Rödel F, Kindler T, Kaina B. Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochimica et Biophysica Acta (BBA). Reviews on Cancer. 2014; 1846 (1): 121–29. DOI: 10.1016/j. bbcan.2014.04.009.
  5. Rybkina VL, Bannikova MV, Adamova GV, Dörr H, Scherthan H, Azizova TV. Immunological markers of chronic occupational radiation exposure. Health Phys. 2018; 115 (1): 108–13. DOI:10.1097/HP.0000000000000855.
  6. Akleev AV, redaktor. Posledstviya radioaktivnogo zagryazneniya reki Techi. Chelyabinsk: Kniga, 2016; 390 s. Russian.
  7. Degteva MO, Napier BA, Tolstykh EI, Shishkina EA, Bougrov NG, Krestinina LYu, et al. Raspredelenie individual'nyx doz v kogorte lyudej, obluchennyx v rezul'tate radioaktivnogo zagryazneniya reki Techi. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2019; 64 (3): 46–53. DOI: 10.12737/article_5cf2364 cb49523.98590475. Russian.
  8. SanPin 2.6.1.2523-09 «Normy radiacionnoj bezopasnosti (NRB - 99/2009)». M., 2009; 225 s. Russian.
  9. Zurochka AV, Khaidukov SV, Kudryavtsev IV, Chereshnev VA. Protochnaya citometriya v biomedicinskix issledovaniyax. Ekaterinburg: RIO UrO RAN, 2018; 720 s. Russian.
  10. Kudryavtsev IV, Serebryakova MK, Totolyan AA. Znacheniya normy subpopulyacij T-xelperov razlichnogo urovnya differencirovki v perifericheskoj krovi. Klinicheskaya laboratornaya diagnostika. 2016; 61 (3): 179–84. DOI: 10.18821/0869-2084-2016-3-179184. Russian.
  11. Kudryavtsev IV, Borisov AG, Krobinets II, Savchenko AA, Serebryakova MK, Totolyan AA. Xemokinovye receptory na T-xelperax razlichnogo urovnya differencirovki: osnovnye subpopulyacii. Medicinskaya immunologiya. 2016; 18 (3): 239–50. DOI: 10.15789/1563-0625-2016-3-239-250. Russian.
  12. Kudryavcev IV. T-kletki pamyati: osnovnye populyacii i stadii diferencirovki. Rossijskij immunologicheskij zhurnal. 2014; 8 (17): 947–64. Russian.
  13. Dong C. Cytokine Regulation and Function in T Cells. Annu Rev Immunol. 2021; 39: 51–76. DOI: 10.1146/annurevimmunol-061020-053702.
  14. Goronzy JJ, Lee WW, Weyand CM. Aging and T-cell diversity. Exp Gerontol. 2007; 42 (5): 400–6. DOI: 10.1016/j.exger.2006.11.016.
  15. Lefebvre JS, Lorenzo EC, Masters AR, et al. Vaccine efficacy and T helper cell differentiation change with aging. Oncotarget. 2016; 7 (23): 33581–94. DOI: 10.18632/oncotarget.9254.
  16. Haynes L, Lefebvre JS. Age-related Deficiencies in AntigenSpecific CD4 T cell Responses: Lessons from Mouse Models. Aging Dis. 2011; 2 (5): 374–81.
  17. Huang J, Xu X, Yang J. miRNAs Alter T Helper 17 Cell Fate in the Pathogenesis of Autoimmune Diseases. Front Immunol. 2021; 12: 593473. DOI: 10.3389/fimmu.2021.593473.
  18. Takeuchi Y, Hirota K, Sakaguchi S. Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis. Immunol Rev. 2020; 294 (1): 164–76. DOI: 10.1111/imr.12841.
  19. Shao F, Zheng P, Yu D, Zhou Z, Jia L. Follicular helper T cells in type 1 diabetes. FASEB J. 2020; 34 (1): 30–40. DOI: 10.1096/fj.201901637R.
  20. Chang SH. T helper 17 (Th17) cells and interleukin-17 (IL17) in cancer. Arch Pharm Res. 2019; 42 (7): 549–59. DOI: 10.1007/s12272-019-01146-9.
  21. Wu X, Fajardo-Despaigne JE, Zhang C, et al. Altered T Follicular Helper Cell Subsets and Function in Chronic Lymphocytic Leukemia. Front Oncol. 2021; 11: 674492. DOI: 10.3389/fonc.2021.674492.
  22. Dahal LN. The dichotomy of T helper 17 cells in cancer. Nat Rev Immunol. 2017; 17 (9): 592. DOI: 10.1038/nri.2017.93.
  23. Marshall EA, Ng KW, Kung SH, et al. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis. Mol Cancer. 2016; 15 (1): 67. DOI: 10.1186/s12943-016-0551-1.
  24. Mazzarella G, Bianco A, Catena E, De Palma R, Abbate GF. Th1/ Th2 lymphocyte polarization in asthma. Allergy. 2000; 55 (Suppl 61): 6–9. DOI: 10.1034/j.1398-9995.2000.00511.x.
  25. Chen R, Wang YW, Fornace AJ Jr, Li HH. Impairment of the Intrinsic Capability of Th1 Polarization in Irradiated Mice: A Close Look at the Imbalanced Th1/Th2 Response after Irradiation. Radiat Res. 2016; 186 (6): 559–67. DOI: 10.1667/RR14401.1.
  26. Zhang X-L, Komada Y, Chipeta J, Li Q-S, Inaba H, Azuma E, Yamamoto H, Sakurai M. Intracellular cytokine profile of T cells from children with acute lymphoblastic leukemia. Cancer Immunol Immunother. 2000; 49: 165–72.
  27. Yatnda P, Mintz P, Grigoriadou K, Lemonnier F, Vilmer E, Langlade-Demoyen P. Analysis of T-cell defects in the specific immune response against acute lymphoblastic leukemia cells. Exp Hematol. 1999; 27: 1375–83.
  28. De Totero D, Reato G, Mauro F, et al. IL-4 production and increased CD30 expression by a unique CD8 — T-cell subset in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1999; 104: 589–99.
  29. Pan B, Zeng L, Cheng H, et al. Altered balance between Th1 and Th17 cells in circulation is an indicator for the severity of murine acute GVHD. Immunol Lett. 2012; 142 (1–2): 48–54. DOI: 10.1016/j.imlet.2011.12.005.
  30. Bazzazi H, Aghaei M, Memarian A, Asgarian-Omran H., Behnampour N, Yazdani Y. Th1–Th17 ratio as a new insight in rheumatoid arthritis disease. Iran J Allergy Asthma Immunol. 2018; 17 (1): 68–77.
  31. Kusunoki Y, Yamaoka M, Kasagi F, Hayashi T, MacPhee DG, Kyoizumi S. Long-lasting changes in the T-cell receptor V beta repertoires of CD4 memory T-cell populations in the peripheral blood of radiation-exposed people. Br J Haematol. 2003; 122: 975–84. DOI: 10.1046/j.1365-2141.2003.04520.x.
  32. Yoshida K, Misumi M, Kubo Y, Yamaoka M, Kyoizumi S, Ohishi W, et al. Long-term effects of radiation exposure and metabolic status on telomere length of peripheral blood T cells in atomic bomb survivors. Radiat Res. 2016; 186: 367–76. DOI: 10.1667/RR14389.1.
  33. Kiselev SM, Sokolnikov ME, Lyss LV, Ilyina NI. Immunological monitoring of the personnel at radiation hazardous facilities. Radiation Protection Dosimetry. 2016; 173 (1–3): 124–30. DOI: 10.1093/rpd/ncw346.
  34. Rybkina VL, Azizova TV, Scherthan H, Meineke V, Doerr H, Adamova GV, et al. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation. Radiat Environ Biophys. 2014; 53 (4): 659–70. DOI: 10.1007/s00411-014-0556-3.
  35. Zhang H, Weyand CM, Goronzy JJ. Hallmarks of the aging T-cell system. FEBS J. 2021; 288 (24): 7123–142. DOI: 10.1111/ febs.15770.
  36. Bentebibel SE, Lopez S, Obermoser G, et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013; 5 (176): 176ra32. DOI: 10.1126/scitranslmed.3005191.
  37. Brenna E, Davydov AN, Ladell K, et al. CD4+ T Follicular Helper Cells in Human Tonsils and Blood Are Clonally Convergent but Divergent from Non-Tfh CD4+ Cells. Cell Rep. 2020; 30 (1): 137– 52. DOI: 10.1016/j.celrep.2019.12.016.
  38. Olatunde AC, Hale JS, Lamb TJ. Cytokine-skewed Tfh cells: functional consequences for B cell help. Trends Immunol. 2021; 42 (6): 536–50. DOI: 10.1016/j.it.2021.04.006.