ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Оценка цитотоксичности и противовирусной активности смеси лактоферрина, артемизинина и азитромицина в отношении SARS-CoV-2 in vitro

А. А. Рябченкова1, В. В. Копать1, Е. Р. Чирак1, Е. Л. Чирак1, И. А. Ленева2, Е. А. Глубокова2, Н. П. Карташова2, Н. Н. Колмаков3, И. В. Духовлинов1
Информация об авторах

1 Общество с ограниченной ответственностью «АТГ Сервис Ген», Санкт-Петербург, Россия

2 Научно-исследовательский институт вакцин и сывороток имени И. И. Мечникова, Москва, Россия

3 Институт экспериментальной медицины, Санкт-Петербург, Россия

Для корреспонденции: Анастасия Андреевна Рябченкова
пр-кт Малый В. О., д. 57, к. 4, литера Ж, помещение 5-Н, г. Санкт-Петербург, 199178, Россия; ur.eneg-ecivres@avoknehcbair

Информация о статье

Благодарности: Евгению Бахтиеровичу Файзулоеву (ФГБНУ НИИВС им. И. Мечникова) за предоставленный вирус. Исследование выполнено с использованием оборудования центра коллективного пользования НИИВС им. И. И. Мечникова.

Вклад авторов: А. А. Рябченкова — концепция и дизайн исследования, анализ и интерпретация данных, подготовка текста; В. В. Копать — концепция, дизайн и организация проведения исследования, подготовка текста; Е. Р. Чирак, Е. Л. Чирак — дизайн исследования, подготовка образцов и материалов; И. А. Ленева — проведение экспериментов, сбор, анализ и интерпретация данных; Н. П. Карташова, Е. А. Глубокова — проведение экспериментов; Н. Н. Колмаков — концепция исследования, корректировка текста; И. В. Духовлинов — инициация, руководство проектом, подготовка концепции состава препарата, организация финансирования проекта.

Соблюдение этических стандартов: исследование проведено в соответствии с принципами Хельсинкской декларации Всемирной медицинской ассоциации.

Статья получена: 23.09.2022 Статья принята к печати: 14.11.2022 Опубликовано online: 25.12.2022
|
  1. Martinez MA. Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus. Antimicrob Agents Chemother. 2020; 64 (5): e00399-20. https://doi.org/10.1128/ AAC.00399-20.
  2. Convertino I, Tuccori M, Ferraro S, Valdiserra G, Cappello E, Focosi D, et al. Exploring pharmacological approaches for managing cytokine storm associated with pneumonia and acute respiratory distress syndrome in COVID-19 patients. Crit Care. 2020; 24 (1): 331. https://doi.org/10.1186/s13054-020-03020-3.
  3. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)» версия 16 от 18.08.2022. 2022; 249 с.
  4. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife. 2020; 9: e61312. Available from: https:// doi.org/10.7554/eLife.61312.
  5. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021; 6 (1): 233. Available from: https://doi.org/10.1038/s41392021-00653-w.
  6. Lokhande KB, Apte GR, Shrivastava A, Singh A, Pal JK, K Venkateswara Swamy, et al. Sensing the interactions between carbohydrate-binding agents and N-linked glycans of SARSCoV-2 spike glycoprotein using molecular docking and simulation studies. J Biomol Struct Dyn. 2022; 40 (9): 3880–98. Available from: https://doi.org/10.1080/07391102.2020.1851303.
  7. Kim CH. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci. 2020; 21 (12): 4549. Available from: https://doi.org/10.3390/ijms21124549.
  8. Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020; 183 (4): 1043–57. Available from: https://doi.org/10.1016/j.cell.2020.09.033.
  9. Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses. 2019; 11 (7): 596. Available from: https://doi.org/10.3390/v11070596.
  10. Tree JA, Turnbull JE, Buttigieg KR, Elmore MJ, Coombes N, Hogwood J, et al. Unfractionated heparin inhibits live wild type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations. Br J Pharmacol. 2021; 178 (3): 626–35. https://doi.org/10.1111/bph.15304.
  11. Kim SY, Jin W, Sood A, Montgomery DW, Grant OC, Fuster MM, et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 2020; 181: 104873. Available from: https://doi.org/10.1016/j.antiviral.2020.104873.
  12. Ori A, Wilkinson MC, Fernig DG. The heparanome and regulation of cell function: structures, functions and challenges. Front Biosci. 2008; 13: 4309–38. Available from: https://doi.org/10.2741/3007.
  13. Rudd TR, Preston MD, Yates EA. The nature of the conserved basic amino acid sequences found among 437 heparin binding proteins determined by network analysis. Mol Biosyst. 2017; 13 (5): 852–65. Available from: https://doi.org/10.1039/c6mb00857g.
  14. Meneghetti MC, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, et al. Heparan sulfate and heparin interactions with proteins. J R Soc Interface. 2015; 12 (110): 0589. Available from: https://doi.org/10.1098/rsif.2015.0589.
  15. Zhang Q, Chen CZ, Swaroop M, Xu M, Wang L, Lee J, et al. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov. 2020; 6 (1): 80. Available from: https://doi.org/10.1038/s41421-020-00222-5.
  16. Salaris C, Scarpa M, Elli M, Bertolini A, Guglielmetti S, Pregliasco F, et al. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro. Nutrients. 2021; 13 (2): 328. Available from: https://doi.org/10.3390/nu13020328.
  17. Kell DB, Heyden EL, Pretorius E. The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Front Immunol. 2020; 11: 1221. Available from: https:// doi.org/10.3389/fimmu.2020.01221.
  18. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014; 5: 461. Available from: https://doi.org/10.3389/ fimmu.2014.00461.
  19. Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest. 2019; 129 (9): 3625–39. Available from: https://doi. org/10.1172/JCI126363.
  20. Sano E, Miyauchi R, Takakura N, Yamauchi K, Murata E, Trang Le Q, et al. Cysteine protease inhibitors in various milk preparations and its importance as a food, Food Research International, 2005: 38 (4): 427–33, https://doi.org/10.1016/j.foodres.2004.10.011.
  21. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune crossreactivity with SARS-CoV. Nat Commun. 2020; 11 (1): 1620. Available from: https://doi.org/10.1038/s41467-020-15562-9.
  22. Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev Rep. 2020; 16 (3): 434–40. Available from: https:// doi.org/10.1007/s12015-020-09976-7.
  23. Chen Y, Zhang H, Gou X, Horikawa Y, Xing J, Chen Z. Upregulation of HAb18G/CD147 in activated human umbilical vein endothelial cells enhances the angiogenesis. Cancer Lett. 2009; 278 (1): 113– 21. Available from: https://doi.org/10.1016/j.canlet.2009.01.004.
  24. Fang F, Wang L, Zhang S, Fang Q, Hao F, Sun Y. CD147 modulates autophagy through the PI3K/Akt/mTOR pathway in human prostate cancer PC-3 cells. Oncol Lett. 2015; 9 (3): 1439–43. Available from: https://doi.org/10.3892/ol.2015.2849
  25. Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006; 28 (2): 219–25. Available from: https://doi.org/10.1097/01.ftd.0000195617.69721.a5.
  26. Tsai WC, Rodriguez ML, Young KS. Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med. 2004; 170 (12): 1331–9. Available from: https://doi.org/10.1164/rccm.200402-200OC
  27. Culic O, Erakovic V, Cepelak I. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002; 450 (3): 277–89. Available from: https://doi.org/10.1016/S0014-2999(02)02042-3.
  28. Tsai WC, Standiford TJ. Immunomodulatory effects of macrolides in the lung: lessons from in-vitro and in-vivo models. Curr Pharm des. 2004; 10 (25): 3081–93. Available from: https://doi. org/10.2174/1381612043383430.
  29. Stamatiou R, Paraskeva E, Boukas K, Gourgoulianis KI, Molyvdas PA, Hatziefthimiou AA. Azithromycin has an antiproliferative and autophagic effect on airway smooth muscle cells. Eur Respir J. 2009; 34 (3): 721–30. Available from: https://doi. org/10.1183/09031936.00089407.
  30. Cigana C, Assael BM, Melotti P. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother. 2007; 51 (3): 975–81. Available from: https://doi.org/10.1128/AAC.01142-06.
  31. Halldorsson S, Gudjonsson T, Gottfredsson M, Singh PK, Gudmundsson GH, Baldursson O. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 2010; 42 (1): 62–8. Available from: https:// doi.org/10.1165/rcmb.2008-0357OC
  32. Pani A, Lauriola M, Romandini A, Scaglione F. Macrolides and viral infections: focus on azithromycin in COVID-19 pathology. Int J Antimicrob Agents. 2020; 56 (2): 106053. Available from: https:// doi.org/10.1016/j.ijantimicag.2020.106053
  33. Khoshnood S, Shirani M, Dalir A, Moradi M, Haddadi M, Sadeghifard N, et al. Antiviral effects of azithromycin: A narrative review, Biomedicine & Pharmacotherapy. 2022; 147: 112682, Available from: https://doi.org/10.1016/j.biopha.2022.112682.
  34. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30 (3): 269–71. Available from: https://doi.org/10.1038/s41422-020-0282-0.
  35. Hedya SA, Safar MM, Bahgat AK. Hydroxychloroquine antiparkinsonian potential: Nurr1 modulation versus autophagy inhibition. Behav Brain Res. 2019; 365: 82–88. Available from: https://doi.org/10.1016/j.bbr.2019.02.033.
  36. Efferth T, Marschall M, Wang X, Huong SM, Hauber I, Olbrich A, et al. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J Mol Med (Berl). 2002; 80 (4): 233–42. Available from: https://doi. org/10.1007/s00109-001-0300-8.
  37. Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett. 2003; 552: 141–4. Available from: https://doi.org/10.1016/S0014-5793(03)00905-0
  38. Nunes JJ, Pandey SK, Yadav A, Goel S, Ateeq B. Targeting NFkappa B Signaling by Artesunate Restores Sensitivity of CastrateResistant Prostate Cancer Cells to Antiandrogens. Neoplasia. 2017; 19 (4): 333–45. Available from: https://doi.org/10.1016/j. neo.2017.02.002.
  39. Gendrot M, Duflot I, Boxberger M, Delandre O, Jardot P, Le Bideau M, et al. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int J Infect Dis. 2020; 99: 437–40. Available from: https://doi.org/10.1016/j. ijid.2020.08.032.
  40. Rolta R, Salaria D, Sharma P, Sharma B, Kumar V, Rathi B, et al. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua Inhibit Spike Protein of SARS-CoV-2 Binding to ACE2 Receptor: In Silico Approach. Curr Pharmacol Rep. 2021; 7 (4): 135–49. Available from: https://doi.org/10.1007/s40495-02100259-4.
  41. Uckun FM, Saund S, Windlass H, Trieu V. Repurposing AntiMalaria Phytomedicine Artemisinin as a COVID-19 Drug. Front Pharmacol. 2021; 12: 649532. Available from: https://doi. org/10.3389/fphar.2021.649532.
  42. Fuzimoto AD. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. J Integr Med. 2021; 19 (5): 375–88. Available from: https://doi. org/10.1016/j.joim.2021.07.003.
  43. Ribaudo G, Coghi P, Yang LJ, Ng JPL, Mastinu A, Memo M, et al. Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD). Nat Prod Res. 2021; 12: 1–6. Available from: https://doi.org/10.1080/14786419. 2021.1925894.
  44. Gendrot M, Andreani J, Boxberger M, Jardot P, Fonta I, Le Bideau M, et al. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Trav Med Infect Dis. 2020; 37: 101873. Available from: https://doi.org/10.1016/j. tmaid.2020.101873.
  45. Chen J, Subbarao K. The Immunobiology of SARS*. Annu Rev Immunol. 2007; 25: 443–72. Available from: https://doi.org/10.1146/annurev.immunol.25.022106.141706.
  46. Sapp M, Bienkowska-Haba M. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J. 2009; 276 (24): 7206–16. Available from: https://doi.org/10.1111/j.1742-4658.2009.07400.x.
  47. Leistner CM, Gruen-Bernhard S, Glebe D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell Microbiol. 2008; 10 (1): 122–33. Available from: https://doi. org/10.1111/j.1462-5822.2007.01023.x.