ORIGINAL RESEARCH

Isolation and characterization of Klebsiella pneumoniae bacteriophages encoding polysaccharide depolymerases with rare capsule specificity

About authors

1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia

2 Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia

3 Pediatric Research and Clinical Center of Infectious Diseases of the Federal Medical Biological Agency, Saint Petersburg, Russia

Correspondence should be addressed: Roman B. Gorodnichev
Malaya Pirogovskaya, 1а, Moscow, 119435, Russia; moc.liamg@b.r.vehcindorog

About paper

Funding: the study was supported by the funds of the State Assignment "Development of the Scheme for Complex Therapy of Infectious Diseases Caused by Antibiotic Resistant Pathogens Involving the Use of Bacteriophages or Their Derivatives in Combination with Antibacterials” (code: Bacteriophage-2). Typing of Klebsiella pneumoniae strains was supported by the Russian Science Foundation (project No. 22-15-00149, https://rscf.ru/project/22-15-00149/).

Author contribution: Gorodnichev RB, Kornienko MA — study plan, data acquisition and processing, manuscript writing; Bespiatykh DA — data processing; Malakhova MV — data acquisition; Veselovsky VA, Goloshchapov OV, Chukhlovin AB, Bespyatykh JA — data acquisition and processing, Shitikov EA — study plan, data processing, manuscript writing.

Compliance with ethical standards: experimental work was carried out in compliance with the guidelines SP 1.3.2322-08 "Safety of Working With Microorganisms of III—IV Groups of Pathogenicity (Danger) and Causative Agents of Parasitic Diseases"; guidelines SP 1.3.2518-09 “Additions and Amendments № 1 to the guidelines SP 1.3.2322-08 "Safety of Working With Microorganisms of III—IV Groups of Pathogenicity (Danger) and Causative Agents of Parasitic Diseases"; guidelines "Sanitary and Epidemiologic Requirements for the Handling of Medical Waste" (SanPiN 2.1.7.2790-10 SanPiN 3.3686-21, SanPiN 2.1.3684-21); Federal Clinical Guidelines "Rational Use of Bacteriophages in Clinical and Epidemiological Practice".

Received: 2022-11-05 Accepted: 2022-12-01 Published online: 2022-12-03
|
  1. Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol Mol Biol Rev. 2016; 80 (3): 629–61.
  2. Touati A, Mairi A, Baloul Y, Lalaoui R, Bakour S, Thighilt L et al. First detection of Klebsiella pneumoniae producing OXA-48 in fresh vegetables from Béjaïa city, Algeria J Glob Antimicrob. Resist. 2017; 9: 17–18.
  3. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998; 11 (4): 589–603.
  4. Sukhorukova MV, Edelstein MV, Skleenova EY, Ivanchik NV, Shajdullina ER, Azyzov IS et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015–2016”. 2019; 21 (2): 147–59.
  5. Kuzmenkov AY, Vinogradova AG, Trushin IV, Eidelstein MV, Avramenko AA, Dehnich AV et al. AMRmap — ANTIBIOTIC RESISTANCE SURVEILLANCE SYSTEM IN RUSSIA. Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia, 2021; 23 (2): 198–204.
  6. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629–55.
  7. Górski A, Międzybrodzki R, Węgrzyn G, Jończyk‐Matysiak E, Borysowski J, Weber‐Dąbrowska B. Phage therapy: Current status and perspectives. Med Res Rev. 2020; 40 (1): 459–63.
  8. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage. 2011; 1 (1): 31.
  9. D’Herelle MF. On an invisible microbe antagonistic to dysentery bacilli. Comptes Rendus Acad des Sci Paris. 1917; 165: 373–5.
  10. Khatami A, Lin RC, Petrovic‐Fabijan A, Alkalay‐Oren S, Almuzam S, Britton PN et al. Bacterial lysis, autophagy and innate immune responses during adjunctive phage therapy in a child. EMBO Mol Med. 2021; 13 (9): e13936.
  11. Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis. 2021; 21 (3): 427–36.
  12. Petrovic Fabijan A, Lin RC, Ho J, Maddocks S, Ben Zakour NL, Iredell JR. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020; 5 (3): 465–72.
  13. Verbeken G, Pirnay JP. European regulatory aspects of phage therapy: magistral phage preparations. Curr Opin Virol. 2022; 52 (November): 24–29.
  14. Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol Biotechnol. 2016; 100 (5): 2141–51.
  15. Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating bacterial infections with bacteriophage-based enzybiotics: In vitro, in vivo and clinical application. Antibiotics. 2021; 10 (12): 1–36.
  16. Kornienko M, Ilina E, Lubasovskaya L, Priputnevich T, Falova O, Sukhikh G et al. Analysis of nosocomial Staphylococcus haemolyticus by MLST and MALDI-TOF mass spectrometry. Infect. Genet Evol. 2016; 39: 99–105.
  17. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C et al. Wzi gene sequencing, a rapid method for determination of capsulartype for klebsiella strains. J Clin Microbiol. 2013; 51 (12): 4073–8.
  18. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of Bacteriophages by the Direct Plating Plaque Assay. Methods Mol. Biol. Humana Press. 2009; 501: 77–80.
  19. Green MR, Sambrook J. Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 2012; 1890 p.
  20. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019; 47 (D1): D687–D692.
  21. Liu B, Pop M. ARDB — Antibiotic resistance genes database. Nucleic Acids Res. 2009; 37 (SUPPL. 1): 443–447.
  22. Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics. 2017; 33 (15): 2379–80.
  23. Gorodnichev RB, Volozhantsev NV, Krasilnikova VM, Bodoev IN, Kornienko MA, Kuptsov NS et al. Novel Klebsiella pneumoniae K23-Specific Bacteriophages From Different Families: Similarity of Depolymerases and Their Therapeutic Potential. Front Microbiol. 2021; 12: 669618.
  24. Gorodnichev RB, Kornienko MA, Kuptsov NS, Malakhova MV, Bespiatykh DA, Veselovsky VA et al. Molecular Genetic Characterization Of Three New Klebsiella pneumoniae Bacteriophages Suitable For Phage Therapy. Extreme medicine. 2021; 23 (3): 90-97.
  25. Chen X, Tang Q, Li X, Zheng X, Li P, Li M et al. Isolation, characterization, and genome analysis of bacteriophage P929 that could specifically lyase the KL19 capsular type of Klebsiella pneumoniae. Virus Res. 2022; 314: 198750.
  26. Turner D, Kropinski AM, Adriaenssens EM. A Roadmap for Genome-Based Phage Taxonomy. Viruses. 2021; 13 (3): 506.
  27. Squeglia F, Maciejewska B, Łątka A, Ruggiero A, Briers Y, DrulisKawa Z et al. Structural and Functional Studies of a Klebsiella Phage Capsule Depolymerase Tailspike: Mechanistic Insights into Capsular Degradation. Structure. 2020; 28 (6): 613–624.e4.
  28. Zhao J, Liu C, Liu Y, Zhang Y, Xiong Z, Fan Y et al. Genomic characteristics of clinically important ST11 Klebsiella pneumoniae strains worldwide. J Glob Antimicrob Resist. 2020; 22: 519–6.
  29. Petrovic Fabijan A, Khalid A, Maddocks S, Ho J, Gilbey T, Sandaradura I et al. Phage therapy for severe bacterial infections: a narrative review. Med J Aust. 2020; 212 (6): 279–5.
  30. Aslanov BI, Zueva LP, Kaftyreva LA, Bojcov AG, Akimkin VG, Dolgij AA. et al. Racional'noe primenenie bakteriofagov v lechebnoj i protivojepidemicheskoj praktike. Izd-vo «Remedium Privolzh'e»; 2014; 54 c.