METHOD

Identification of phosphonylated peptides using a MALDI target functionalized with lanthanum stearate

Babakov VN1, Gorbunov AYu1, Gladchuk AS2,4, Kalninya YaK2, Shilovskikh VV4, Tomilin NV2, Sukhodolov NG3,4, Radilov AS1, Podolskaya EP2,3
About authors

1 Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency, St. Petersburg, Russia

2 Golikov Research Center of Toxicology, St. Petersburg, Russia

3 Institute for Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, Russia

4 St. Petersburg State University, St. Petersburg, Russia

Correspondence should be addressed: Vladimir Nikolaevich Babakov
Kuzmolovsky, st. Kapitolovo, str. 93, Leningradsraja oblast, Russia; ur.hcepg@vokabab

About paper

Acknowledgments: the authors express their gratitude for technical support to the resource centers Development of Molecular and Cellular Technologies and Geomodel of the Research Park of St. Petersburg State University, and to A.A. Selyutin for the opportunity to use the MALDI mass spectrometer.

Received: 2022-11-11 Accepted: 2023-01-11 Published online: 2023-01-28
|
  1. Mangas J, Estevez E, Vilanova TC, França C. New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology. 2017; 376: 30–43.
  2. Konvenciya o ximicheskom oruzhii. Dostupno po ssylke: https://www.opcw.org/sites/default/files/documents/CWC/CWC_ru.pdf.
  3. Schaller J, Gerber S, Kämpfer U, Lejon S, Trachsel Ch. Human Blood Plasma Proteins: Structure and Function. John Wiley & Sons, Ltd., 2008; 538 p.
  4. Van der Schans MJ, Fidder A, van Oeveren D, Hulst AG, Noort D. Verification of exposure to cholinesterase inhibitors: generic detection of OPCW Schedule 1 nerve agent adducts to human butyrylcholinesterase. J Anal Toxicol. 2008; 32: 125–9. DOI: 10.1093/jat/32.1.125.
  5. Dubrovskii Ya, Murashko E, Chuprina O, Beltyukov P, Radilov A, Solovyev N, et al. Mass spectrometry based proteomic approach for the screening of butyrylcholinesterase adduct formation with organophosphates. Talanta. 2019; 197: 374–82. DOI: 10.1016/j.talanta.2019.01.059.
  6. Read RW, Riches JR, Stevens JA, Stubbs SJ, Black RM. Biomarkers of organophosphorus nerve agent exposure: comparison of phosphylated butyrylcholinesterase and phosphylated albumin after oxime therapy. Arch Toxicol. 2010; 84: 25–36. DOI: 10.1007/s00204-009-0473-4.
  7. Liu C, Huang G, Xia Ha, Liu S, Liu J, Yu H, et al. Yuan. Simultaneous quantification of soman and VX adducts to butyrylcholinesterase, their aged methylphosphonic acid adducts and butyrylcholinesterase in plasma using an off-column procainamide-gel separation method combined with UHPLC– MS/MS. J Chromatogr. 2016; 1036–7: 57–65. DOI: 10.1016/j. jchromb.2016.09.044.
  8. Fu F, Guo Y, Lu X, Zhao P, Zou S, Wang H, et al. Forensic analysis of soman exposure using characteristic fragment ions from protein adducts. Human & Experimental Toxicology, 2021; 9603271211001111. DOI: 10.1177/09603271211001111.
  9. Awad H, Khamis MM, El-Aneed A. Mass spectrometry, review of the basics: ionization, Applied spectroscopy reviews. 2015; 50: 158–75. DOI: 10.1080/05704928.2014.954046.
  10. Greco V, Piras C, Pieroni L, Ronci M, Putignani L, Roncada P, et al. Applications of MALDI-TOF mass spectrometry in clinical proteomics. Expert Review of Proteomics. 2018; 15: 683–96. DOI: 10.1080/14789450.2018.1505510.
  11. Israr MZ, Bernieh D, Salzano A, Cassambai Sh, Yazaki Y, Suzuki T. Matrixassisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med. 2020; 58: 883–96. DOI: 10.1515/cclm-2019-0868.
  12. Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. Mass Spectrometry Reviews. 2011; 30: 435–78. DOI: 10.1002/mas.20288.
  13. Ch-J Chen, Ch-Ch Lai, M-Ch Tseng, Yu-Ch Liu, Sh-Yi Line, Fuu-J Tsai. Simple fabrication of hydrophobic surface target for increased sensitivity and homogeneity in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of peptides, phosphopeptides, carbohydrates and proteins. Analytica Chimica Acta. 2013; 783: 31–38. DOI: 10.1016/j.aca.2013.04.029.
  14. Huang H, Sun L, He H, Xia T. A new silicon dioxide-coated MALDI-TOF sample plate for peptide analysis. BioMed Research International. 2020; 8597217: 1–6. DOI: 10.1155/2020/8597217.
  15. Gladilovich V, Greifenhagen U, Sukhodolov N, Selyutin A, Singer D, Thieme D, et al. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron (III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics. J Chromatogr A. 2016; 1443: 181–90. DOI: 10.1016/j.chroma.2016.03.044.
  16. Rozhkova EA, Krasnov IA, Sukhodolov NG, Ivanov NS, Yanklovich AI, Podolskaya EP, et al. Surface behavior of nanostructures (Langmuir-Blodgett Films), Containing Fe(III) ions and their composition determination mass-spectrometry methods. Nauchnoe Priborostr. 2008; 18: 54–60.
  17. Miyauchi S, Arisawa S, Yamada T, Yamamoto H, Yamamoto R. Adhesion of fatty acid in Langmuir-Blodgett films. Thin Solid Films. 1989; 178: 347–50. DOI: 10.1016/0040-6090(89)90320-9.
  18. Shreyner E, Alexandrova M, Sukhodolov N, Selyutin A, Podolskaya E. Extraction of the insecticide dieldrin from water and biological samples by metal affinity chromatography, Mendeleev Commun. 2017; 27: 304–6. DOI: 10.1016/j.mencom.2017.05.030.
  19. Silyavka ES, Selyutin AA, Sukhodolov NG, Shilovskikh VV, Oleneva PA, Mitrofanov AA, et al. Collapsed monomolecular thin films as surface nanomodification techniques for bioorganic MALDI analysis. AIP Conf Proc. 2019; 2064: 030015-1–0300155. DOI: 10.1063/1.5087677.
  20. Gladchuk AS, Silyavka ES, Shilovskikh VV, Bocharov VN, Zorin IM, Tomilin NV, et al. Self-organization of stearic acid salts on the hemispherical surface of the aqueous subphase allows functionalization of matrix-assisted laser desorption/ionization mass spectrometry target plates for on-plate immobilized metal affinity chromatography enrichment. Thin Solid Films. 2022; 756: 139374. DOI: 10.1016/j.tsf.2022.139374.
  21. Koryagina NL, Saveleva EI, Karakashev GV, Babakov VN, Dubrovskii YaA, et al. Determination of protein adducts of organophosphorus nerve agents in blood plasma. J Anal Chem. 2016; 71: 849–59. DOI: 10.1134/S1061934816080086.
  22. Masson P, Nachon F, Lockridge O. Structural approach to the aging of phosphylated cholinesterases. Chemico-Biological Interactions. 2010; 187: 157–62. DOI: 10.1016/j.cbi.2010.03.027.
  23. Jiang W, Murashko EA, Dubrovskii YA, Podolskaya EP, Babakov VN, Mikler J, et al. Matrix-assisted laser desorption/ionization timeof-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase. Anal Biochem. 2013; 439: 132–41. DOI: 10.1016/j.ab.2013.04.018.
  24. Marsillach J, Costa LG, Furlong CE. Protein adducts as biomarkers of exposure to organophosphorus compounds. Toxicology. 2013; 307: 46–54. DOI: 10.1016/j.tox.2012.12.007.
  25. Peeples ES, Schopfer LM, Duysen EG, Spaulding R, Voelker T, Thompson CM, et al. Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry. Toxicological Sciences. 2005; 83: 303–12. DOI: 10.1093/toxsci/kfi023.
  26. Bao Y, Liu Q, Chen J, Lin Y, Wu B, Xie J. Quantification of nerve agent adducts with albumin in rat plasma using liquid chromatography–isotope dilution tandem mass spectrometry. J of Chromatography A. 2012; 1229: 164–71. DOI: 10.1016/j. chroma.2012.01.032.
  27. John H, van der Schans MJ, Koller M, H. Spruit ET, Worek F, Thiermann H, et al. Fatal sarin poisoning in Syria 2013: forensic verification within an international laboratory network. Forensic toxicology. 2017; 36: 61–71. DOI: 10.1007/s11419-017-0376-7.
  28. Schopfer LM, Lockridge O. Analytical approaches for monitoring exposure to organophosphorus and carbamate agents through analysis of protein adducts. Drug testing and analysis. 2012; 4: 246–61. DOI: 10.1002/dta.1325.