ORIGINAL RESEARCH

Assessment of individual hematopoietic stem cell response to gamma exposure using humanized mice

Atamanyuk NI1, Pryakhin EA1, Styazhkina EV1,2, Obvintseva NA1, Tryapitsyna GA1,2, Peretykin AA1, Andreev SS1, Aldibekova AE1, Akleyev AV1,2
About authors

1 Urals Research Center for Radiation Medicine of the Federal Medical Biological Agency, Chelyabinsk, Russia

2 Chelyabinsk State University, Chelyabinsk, Russia

Correspondence should be addressed: Natalia I. Atamanyuk
Vorovskogo, 68А, Chelyabinsk, 454141, Russia; ur.liam@arhlup_ativ

About paper

Funding: the study was performed as part of the State Assignment of FMBA of Russia.

Acknowledgments: the authors would like to thank A.V. Sherstobitov (Regional Perinatal Center, Chelyabinsk) for his help in organizing and cord blood sampling.

Author contribution: Atamanyuk NI — planning and conducting experiments, manuscript writing; Pryakhin EA — study planning and management, manuscript writing; Styazhkina EV — HSC isolation, data analysis; Obvintseva NA — measurement, flow cytometry; Tryapitsyna GA — data analysis; Peretykin AA — animal exposure, dosimetry studies; Andreev SS — animal handling, measurement; Aldibekova AE — animal handling; Akleyev AV — general management.

Compliance with the ethical standards: the study was approved by the Ethics Committee of the Urals Research Center for Radiation Medicine (protocol № 2 of 27 June 2022). Cord blood sampling was performed after obtaining the informed consent from donors at the Chelyabinsk Regional Perinatal Center. Peripheral blood samples were provided by the Blood Transfusion Station of FMBA of Russia (Chelyabinsk) in accordance with the Decree of the Government of the Russian Federation № 331 of 12 April 2013. Animals were handled in accordance with the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (1986, Strasbourg), Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes.

Received: 2023-02-22 Accepted: 2023-03-09 Published online: 2023-03-11
|
  1. Xaitov RM, Akleev AV, Kofiadi IA. Individual'naya radiochuvstvitel'nost' i immunitet: nacional'noe rukovodstvo. Chelyabinsk: Kniga, 2018; 216 s. Russian.
  2. Applegate KE, Rühm W, Wojcik A, Bourguignon M, Brenner A, Hamasaki K, et al Individual response of humans to ionising radiation: governing factors and importance for radiological protection. Radiat Environ Biophys. 2020; 59 (2): 185–209. DOI: 10.1007/s00411-020-00837-y. PMID: 32146555.
  3. Human Radiosensitivity. Report of the independent Advisory Group on Ionising Radiation Documents of the Health Protection Agency. London, 2013; 164 p.
  4. Ferlazzo ML, Bourguignon M, Foray N. Functional Assays for Individual Radiosensitivity: A Critical Review. Semin Radiat Oncol. 2017; 27 (4): 310–5. DOI: 10.1016/j.semradonc.2017.04.003. PMID: 28865513.
  5. Kogarko IN, Akleev AV, Petushkova VV, Nejfax EA, Kogarko BS, Ktitorova OV, i dr. Adaptivnyj otvet kak kriterij ocenki individual'noj radiochuvstvitel'nosti cheloveka. Radiaciya i risk (Byulleten' NREhR). 2022; 1. Dostupno po ssylke: https://cyberleninka.ru/article/n/adaptivnyy-otvet-kak-kriteriy-otsenki-individualnoy-radiochuvstvitelnosti-cheloveka-obzor (data obrashheniya: 08.11.2022). Russian.
  6. Fliedner TM, Graessle DH. Hematopoietic cell renewal systems: mechanisms of coping and failing after chronic exposure to ionizing radiation. Radiat Environ Biophys. 2008; 47: 63–69. DOI: org/10.1007/s00411-007-0148-6.
  7. Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014; 20 (9): 1447–62. DOI:10.1089/ars.2013.5635.
  8. Fujiwara S. Humanized mice: a brief overview on their diverse applications in biomedical research. J Cell Physiol. 2018; 233: 2889–901.
  9. Ito R, Takahashi T, Ito M. Humanized mouse models: Application to human diseases. J Cell Physiol. 2018; 233 (5): 3723–8.
  10. Wang C, Oshima M, Sashida G, et al. Non-lethal ionizing radiation promotes aging-like phenotypic changes of human hematopoietic stem and progenitor cells in humanized mice. PLoS ONE. 2015; 10 (7): e0132041. DOI: org/10.1371/journal.pone.0132041.
  11. Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol. 2020; 13 (1): 157. DOI: 10.1186/s13045-02000994-z. PMID: 33228751; PMCID: PMC7686726.
  12. de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood. 2018; 131 (5): 479–87. DOI: 10.1182/blood-2017-06-746412. PMID: 29141947.
  13. Mejia-Ramirez E, Florian MC. Understanding intrinsic hematopoietic stem cell aging. Haematologica. 2020; 105 (1): 22–37. DOI: 10.3324/haematol.2018.211342. PMID: 31806687; PMCID: PMC6939535.
  14. Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014; 20 (9): 1447–62. DOI: 10.1089/ars.2013.5635. PMID: 24124731; PMCID: PMC3936513.
  15. Yoshida K, Satoh Y, Uchimura A, Misumi M, Kyoizumi S, Taga M, et al. Massive expansion of multiple clones in the mouse hematopoietic system long after whole-body X-irradiation. Sci Rep. 2022; 12 (1): 17276. DOI: 10.1038/s41598-022-21621-6. PMID: 36241679; PMCID: PMC9568546.
  16. Brojakowska A, Kour A, Thel MC, et al. Retrospective analysis of somatic mutations and clonal hematopoiesis in astronauts. Commun Biol. 2022; 5: 828. Available from: https://doi. org/10.1038/s42003-022-03777-z.
  17. Atamanyuk NI, Pryaxin EA, Andreev SS, Aldibekova AE, Tryapicyna GA, Shaposhnikova IA, i dr. Ispol'zovanie ksenotransplantacii gemopoehticheskix kletok cheloveka, vydelennyx iz perifericheskoj krovi vzroslyx lyudej i pupovinnoj krovi, immunodeficitnym mysham dlya izucheniya dejstviya ioniziruyushhego izlucheniya. Voprosy radiacionnoj bezopasnosti. 2021; 1: 72–83. Russian.
  18. Atamanyuk NI, Styazhkina EV, Obvinceva NA, Tryapicyna GA, Shaposhnikova IA, Andreev SS, i dr. Kinetika gibeli i vosstanovleniya kletok kostnogo mozga u myshej dvux linij s raznoj radiochuvstvitel'nost'yu posle ostrogo γ-oblucheniya. Voprosy radiacionnoj bezopasnosti. 2021; 4: 62–72. Russian.
  19. Biancotti J-C, Town T. Increasing hematopoietic stem cell yield to develop mice with human immune systems. BioMed Research International. 2013; 11. DOI: 10.1155/2013/740892.
  20. Brzozowska K, Pinkawa M, Eble MJ, et all. In vivo versus in vitro individual radiosensitivity analysed in healthy donors and in prostate cancer patients with and without severe side effects after radiotherapy. Int J Radiat Biol. 2012; 88: 405–13.
  21. Kišonas J, Venius J, Sevriukova O, Grybauskas M, Dabkevičienė D, Burneckis A, et al. Individual Radiosensitivity as a Risk Factor for the Radiation-Induced Acute Radiodermatitis. Life. 2022; 12 (1): 20. Available from: https://doi.org/10.3390/life12010020.
  22. Yip H, Haupt C, Maresh G, Zhang X, Li L. Humanized mice for immune checkpoint blockade in human solid tumors. Am J Clin Exp Urol. 2019; 7 (5): 313–20. PMID: 31763362; PMCID: PMC6872471.
  23. Golebiewska A, Hau AC, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathol. 2020; 140 (6): 919–49. DOI: 10.1007/s00401-020-02226-7. PMID: 33009951; PMCID: PMC7666297.
  24. Nilsson JA, Olofsson Bagge R, Ny L. Mouse avatars take off as cancer models. Nature. 2018; 562 (7726): 192. DOI: 10.1038/ d41586-018-06982-1. PMID: 30305752.
  25. Rottstegge M, Tipton T, Oestereich L, Ruibal P, Nelson EV, Olal C, et al. Avatar Mice Underscore the Role of the T Cell-Dendritic Cell Crosstalk in Ebola Virus Disease and Reveal Mechanisms of Protection in Survivors. J Virol. 2022; 96 (18): e0057422. DOI: 10.1128/jvi.00574-22. PMID: 36073921; PM.