ОБЗОР

Подходы к разработке дендритноклеточных и неоантигенных противоопухолевых вакцин

Н. А. Бугаев-Макаровский, П. В. Ершов, А. Г. Волкова, А. С. Макарова, А. А. Кескинов
Информация об авторах

Центр стратегического планирования и управления медико-биологическими рисками здоровью Федерального медико-биологического агентства, Москва, Россия

Для корреспонденции: Павел Викторович Ершов
ул. Погодинская, д. 10, стр. 1, Москва, 119121, Россия; ur.abmfpsc@vohsrep

Информация о статье

Вклад авторов: все авторы внесли равный вклад в создание, написание и корректировку данной обзорной статьи

Статья получена: 10.05.2023 Статья принята к печати: 29.05.2023 Опубликовано online: 28.06.2023
|
  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortali-ty worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021; 71 (3): 209–49.
  2. Ершов П. В., Веселовский Е. М., Константинова Ю. С. Вклад наследственности и совокупности эндогенных и экзогенных факторов риска в развитие рака желудка. Медицина экстремальных ситуаций. 2020; (4): 75–89.
  3. Hirakawa A, Asano J, Sato H, Teramukai S. Master protocol trials in oncology: review and new trial designs. Contemporary clinical trials communications. 2018; 12: 1–8.
  4. Upadhaya S, Neftelinov ST, Hodge J, Campbell J. Challenges and op-portunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat Rev Drug Discov. 2022; 21 (7): 482–3.
  5. Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Experimental Hematology & Oncology. 2022; 11 (1): 1–22.
  6. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nature communications. 2019; 10 (1): 1–10.
  7. Belderbos RA, Aerts JGJV, Vroman H. Enhancing dendritic cell therapy in solid tumors with immunomodulating conventional treatment. Mol Ther Oncolytics. 2019; 13: 67–81.
  8. Марков О. В., Миронова Н. Л., Власов В. В., Зенкова М. А. Противоопухолевые вакцины на основе дендритных клеток: от экспериментов на животных моделях до клинических испытаний. Аcta naturae. 2017; 9 (34): 29–41.
  9. Reynolds CR, Tran S, Jain M, Narendran A. Neoantigen сancer vaccines: generation, optimization, and therapeutic targeting strategies. Vaccines. 2022; 10 (2): 196.
  10. Лебедева Е. С., Атауллаханов Р. И., Хаитов Р. М. Вакцины для лечения злокачественных новообразований. Иммунология. 2019; 40 (4): 64–76. DOI: 10.24411/0206-4952-2019-14008.
  11. Барышникова М. А., Кособокова Е. Н., Косоруков В. С. Неоантигены в иммунотерапии опухолей. Российский биотерапевтический журнал. 2018; 17 (2): 6–14.
  12. Дмитриева М. В., Барышникова М. А., Орлова О. Л., Косоруков В. С. Технологические аспекты создания неопептидных вакцин. 2022; 21 (4): 10–21.
  13. Ji YS, Park SK, Ryu S. Whole leukemia cell vaccines: past progress and future directions. Vaccine. 2020; 38 (22): 3811–20.
  14. U. S. National Library of Medicine. Available from: https://www.clinicaltrials.gov/ct2/home
  15. Cox MC, Castiello L, Mattei M, Santodonato L, D'Agostino G, Muraro E, et al. Clinical and antitumor immune responses in relapsed/refractory follicular lymphoma patients after intranodal injections of IFNα-dendritic cells and rituximab: a phase I clinical trial. Clin Cancer Res. 2019; 25 (17): 5231–41.
  16. Tay BQ, Wright Q, Ladwa R, Perry C, Leggatt G, Simpson F, et al. Evolution of cancer vaccines — challenges, achievements, and future directions. Vaccines. 2021; 9 (5): 535.
  17. Balan S, Arnold-Schrauf C, Abbas A, Couespel N, Savoret J, Imperatore F, et al. Large-scale human dendritic cell differentiation revealing notch-dependent lineage bifurcation and heterogeneity. Cell reports. 2018; 24 (7): 1902–15.
  18. Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, KhodadadiJamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell reports. 2018; 23 (12): 3658–72.
  19. Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh F, Schenck F, et al. Lentivirus-induced ‘Smart’dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene therapy. 2015; 22 (9): 707–20.
  20. Kim JH, Kang TH, Noh KH, Kim SH, Lee YH, Kim KW, et al. Enhancement of DC vaccine potency by activating the PI3K/AKT pathway with a small interfering RNA targeting PTEN. Immunology letters. 2010; 134 (1): 47–54.
  21. Theisen DJ, Davidson IV JT, Briseño CG, Gargaro M, Lauron EJ, Wang Q, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science. 2018; 362 (6415): 694–9.
  22. Sharei A, Cho N, Mao S, Jackson E, Poceviciute R, Adamo A, et al. Cell squeezing as a robust, microfluidic intracellular delivery platform. JoVE. 2013; 81: e50980.
  23. Maloney M, Loughhead S, Ramakrishnan A, Smith C, Venkitaraman A, Yee C, et al. 169 Microfluidics cell squeezing enables human PBMCs as drivers of antigen-specific CD8 T responses across broad range of antigens for diverse clinical applications. Journal for ImmunoTherapy of Cancer. 2020; 8: [about 1 p.]. Available from: https://jitc.bmj.com/content/8/Suppl_3/A183.
  24. Santos P, Almeida F. Exosome-based vaccines: history, current state, and clinical trials. Frontiers in Immunology. 2021; 12: 711565.
  25. Viaud S, Ploix S, Lapierre V, Théry C, Commere PH, Tramalloni D, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ. Journal of immunotherapy. 2011; 34 (1): 65–75.
  26. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016; 5 (4): e1071008.
  27. Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C, Hesse C, et al. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood, The Journal of the American Society of Hematology. 2014; 124 (20): 3081–91.
  28. Failli A, Legitimo A, Orsini, G, Romanini A, Consolini R. Numerical defect of circulating dendritic cell subsets and defective dendritic cell generation from monocytes of patients with advanced melanoma. Cancer letters. 2013; 337 (2): 184–92.
  29. Della Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. British journal of cancer. 2003; 89 (8): 1463–72.
  30. Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nature communications. 2018; 9 (1): 1–19.
  31. Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I, Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. Journal for immunotherapy of cancer. 2019; 7 (1): 1–16.
  32. Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. International Journal of Nanomedicine. 2022; 17: 869.
  33. Cueto FJ, Sancho D. The Flt3L/Flt3 axis in dendritic cell biology and cancer immunotherapy. Cancers. 2021; 13 (7): 1525.
  34. Versteven M, Van den Bergh JM, Marcq E, Smits EL, Van Tendeloo VF, Hobo W, et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Frontiers in immunology. 2018; 9: 394.
  35. Van Beek JJ, Gorris MA, Sköld AE, Hatipoglu I, Van Acker HH, Smits EL, et al. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology. 2016; 5 (10): e1227902.
  36. Van Acker HH, Anguille S, De Reu H, Berneman ZN, Smits EL, Van Tendeloo VF. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion. Frontiers in immunology. 2018; 9: 658.
  37. Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Cruz MT, et al. Pharmacological combination of nivolumab with dendritic cell vaccines in cancer immunotherapy: an overview. Pharmacological Research. 2021; 164: 105309.
  38. Böttcher JP, Bonavita E, Chakravarty P, Blees H, CabezaCabrerizo M, Sammicheli S, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018; 172 (5): 1022–37.
  39. Abakushina EV, Popova LI, Zamyatnin Jr AA, Werner J, Mikhailovsky NV, Bazhin AV. The advantages and challenges of anticancer dendritic cell vaccines and NK cells in adoptive cell immunotherapy. Vaccines. 2021; 9 (11): 1363.
  40. Tan X, Li D, Huang P, Jian X, Wan H, Wang G et al. dbPepNeo: a manually curated database for human tumor neoantigen peptides. Database. 2020; 2020: baaa004.
  41. Verdegaal EME, de Miranda NFCC, Visser M, Harryvan T, van Buuren MM, Andersen RS, et al. Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature. 2016; 536 (7614): 91–95.
  42. Addeo A, Friedlaender A, Banna GL, Weiss GJ. TMB or not TMB as a biomarker: That is the question. Critical reviews in oncology/ hematology. 2021; 163: 103374.
  43. Saxena M, van der Burg SH, Melief CJ, Bhardwaj N. Therapeutic cancer vaccines. Nature Reviews Cancer. 2021; 21 (6): 360–78.
  44. Aramini B, Masciale V, Grisendi G, Bertolini F, Maur M, Guaitoli G, et al. Dissecting tumor growth: The role of cancer stem cells in drug resistance and recurrence. Cancers. 2022; 14 (4): 976.