REVIEW

Robotic means of rehabilitation of motor activity of patients in the post-stroke period

About authors

1 National Research Tomsk State University, Tomsk, Russia

2 Federal Research and Clinical Centre for Medical Rehabilitation and Balneology of the Federal Medical Biological Agency of Russia, Moscow, Russia

3 Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia

Correspondence should be addressed: Dmitry S. Zhdanov
Novosobornaya ploshchad', 1, k. 103, Tomsk, 63450, Russia; ur.liam@vonadhZ_S_D

About paper

Funding: the results were obtained as part of the fulfillment of the state assignment of the Russian Ministry of Education and Science, project № FSWM-2022-0008.

Acknowledgements: to A.Vorozhtsov, Vice-Rector for Research and Innovation of the National Research University for assistance in the development of research in the field of medical robotics.

Author contribution: IY Zemlyakov — article core authoring, formalization of findings and conclusion; DS Zhdanov — analysis of literature; АSh Bureev — analysis of patented solutions; ЕV Golobokova — search for information on devices for restoration of upper limb functions; YaV Kosteley — search for information on devices for restoration of lower limb functions.

Compliance with the ethical standards: The study was approved by the Ethical Committee of the Multidisciplinary Scientific and Clinical Center for Medical and Sports Rehabilitation and Resorts (minutes №1 dated July 6, 2022).

Received: 2023-11-01 Accepted: 2023-12-09 Published online: 2023-12-28
|
  1. Kraevsky SV, Rogatkin DA. Medical robotics: the first steps of medical robots. Technologies of living systems. 2010; 7 (4): 3–14. EDN: OPBPTP. Russian.
  2. Mosoyan MS, Fedorov DA. Modern robotics in medicine. Translational Medicine. 2020; 7 (5): 91–108. DOI: 10.18705/2311-4495-2020-7-5-91-108. Russian.
  3. Kozyrev YuG. Promyshlennye roboty: osnovnye tipy i tehnicheskie harakteristiki. M.: KNORUS, 2015; 560 p. Russian.
  4. Moglia A, Georgiou K, Georgiou E, Satava RM, Cuschieri A. A systematic review on artificial intelligence in robot-assisted surgery. Int J Surg. 2021; 95: 106151. DOI: 10.1016/j.ijsu.2021.106151. PMID: 34695601.
  5. Gyles C. Robots in medicine. Can Vet J. 2019; 60 (8): 819–20. PMID: 31391598. PMCID: PMC6625162.
  6. Denning NL, Kallis MP, Prince JM. Pediatric robotic surgery. Surg Clin North Am. 2020; 100 (2): 431–43. DOI: 10.1016/j.suc.2019.12.004. PMID: 32169188.
  7. Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res. 2019; 21 (5): e13216. DOI: 10.2196/13216. PMID: 31094356. PMCID: PMC6532335.
  8. Ahmad P, Alam MK, Aldajani A, Alahmari A, Alanazi A, Stoddart M, et al. Dental robotics: a disruptive technology. Sensors (Basel). 2021; 21 (10): 3308. DOI: 10.3390/s21103308. PMID: 34064548. PMCID: PMC8151353.
  9. Maalouf N, Sidaoui A, Elhajj IH, Asmar D. Robotics in nursing: a scoping review. J Nurs Scholarsh. 2018; 50 (6): 590–600. DOI: 10.1111/jnu.12424. PMID: 30260093.
  10. Ding Q, Liu S, Yao Y, Liu H, Cai T, Han L. Global, regional, and national burden of ischemic stroke, 1990–2019. Neurology. 2021; 98: 1–10. DOI: 10.1212/WNL.0000000000013115.
  11. Gosine R, Harwin W, Furby L, Jackson R. An intelligent endeffector for a rehabilitation robot. Journal of Medical Engineering Technology. 1989; 13 (1–2): 37–43.
  12. Gosine R, Harwin W, Jackson R. An interactive robot workstation for applications in rehabilitation. IEEE Xplore: Intelligent Robots and Systems '90. 1990: 2: 977–83. DOI: 10.1109/IROS.1990.262522.
  13. Krebs H, Hogan N, Aisen M, Volpe B. Robot-Aided Neurorehabilitation. IEEE transactions on rehabilitation engineering: IEEE Engineering in Medicine and Biology Society. 1998; 6: 75– 87. DOI: 10.1109/86.662623.
  14. Belova AN, Borzenkov VV, Kuznetsov AN, Rukina NN. Robotic devices in neurorehabilitation: the state of the question. Bulletin of Restorative Medicine. 2018; 2: 94–107. Russian.
  15. Koroleva ES, Alifirova VM, Latypova AV, Cheban SV, Ott VA, Brazovsky KS, et al. Principles and experience of using robotic rehabilitation technologies in patients after stroke. Bulletin of Siberian Medicine. 2019; 18 (2): 223–33. Russian.
  16. Aksenova EI, Gorbatov SYu, Maklakova YuA. Jekspertnyj obzor: Industrija reabilitacionnyh tehnologij v Rossii i mire. M.: GBU «NIIOZMM DZM», 2020; 64 p. Russian.
  17. Servisnye roboty ot Promobot. Primenenie v meditsine. [cited 2023 Sept 5]. Available from: https://evercare.ru/news/servisnyeroboty-ot-promobot-primenenie-v-medicine. Russian.
  18. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018; 9 (9): CD006876. DOI: 10.1002/14651858.CD006876.pub5. PMID: 30175845. PMCID: PMC6513114.
  19. GOST R 60.0.0.2 – 2016. Roboty i robototekhnicheskie ustroystva. Klassifikatsiya. M.: Standartinform, 2016; 15 p. Russian.
  20. Klamroth-Marganska V. Stroke rehabilitation: therapy robots and assistive devices. In: P Kerkhof LM, Miller VM, editors. Sexspecific analysis of cardiovascular function. Springer International Publishing AG, 2018; p. 579–87. DOI: 10.1007/978-3-319-77932-4_35.
  21. Fukuda H, Morishita T, Ogata T, Saita K, Hyakutake K, Watanabe J, et al. Tailor-made rehabilitation approach using multiple types of hybrid assistive limb robots for acute stroke patients: A pilot study. Assist Technol. 2016; 28 (1): 53–6. DOI: 10.1080/10400435.2015.1080768. PMID: 26478988.
  22. Park JH, Park G, Kim HY, Lee JY, Ham Y, Hwang D, et al. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study. J Neuroeng Rehabil. 2020; 17 (1): 137. DOI: 10.1186/s12984-020-00763-6. PMID: 33076952. PMCID: PMC7574181.
  23. Xie L, Yoon BH, Park C, You JSH. Optimal intervention timing for robotic-assisted gait training in hemiplegic stroke. Brain Sci. 2022; 12 (8): 1058. DOI: 10.3390/brainsci12081058. PMID: 36009121. PMCID: PMC9405763.
  24. GOST R 51079-2006 (ISO 9999:2002). Tekhnicheskie sredstva reabilitatsii lyudey s ogranicheniyami zhiznedeyatel'nosti. Klassifikatsiya. M.: Rossiyskiy institut standartizatsii, 2007; 114 p. Russian.
  25. GOST R 51819-2022. Protezirovanie i ortezirovanie verkhnikh i nizhnikh konechnostey. Terminy i opredeleniya. M.: Rossiyskiy institut standartizatsii, 2022; 20 p. Russian.
  26. GOST R 59181-2022. Sredstva individual'noy zashchity opornodvigatel'nogo apparata. Ekzoskelety promyshlennye. Klassifikatsiya. Terminy i opredeleniya. M.: Rossiyskiy institut standartizatsii, 2022; 8 p. Russian.
  27. Zhang H, Li X, Gong Y, Wu J, Chen J, Chen W, et al. ThreeDimensional Gait Analysis and sEMG measures for roboticassisted gait training in subacute stroke: a randomized controlled trial. Biomed Res Int. 2023; 2023: 7563802. DOI: 10.1155/2023/7563802. PMID: 37082189. PMCID: PMC10113045.
  28. Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 2018; 15 (1): 46. DOI: 10.1186/s12984-0180383-x. PMID: 29866106. PMCID: PMC5987585.
  29. Baniqued PDE, Stanyer EC, Awais M, Alazmani A, Jackson AE, Mon-Williams MA, et al. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil. 2021; 18 (1): 15. DOI: 10.1186/s12984-021-00820-8. PMID: 33485365. PMCID: PMC7825186.
  30. Du Plessis T, Djouani K, Oosthuizen C. A review of active hand exoskeletons for rehabilitation and assistance. Robotics. 2021; 10: 42. DOI: 10.3390/robotics10010040.
  31. Sun Y, Yuntao T, Zheng J, Dong D, Chen X, Bai L. From sensing to control of lower limb exoskeleton: a systematic review. Annual Reviews in Control. 2022; 53. DOI: 10.1016/j.arcontrol.2022.04.003.
  32. Wu H, Li L, Li L, Liu T, Wang J. Review of comprehensive intervention by hand rehabilitation robot after stroke. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019; 36 (1): 151–6. DOI: 10.7507/1001-5515.201711024. PMID: 30887790. PMCID: PMC9929888.
  33. Spencer J, Wolf SL, Kesar TM. Biofeedback for post-stroke gait retraining: a review of current evidence and future research directions in the context of emerging technologies. Front Neurol. 2021; 12: 637199. DOI: 10.3389/fneur.2021.637199. PMID: 33859607. PMCID: PMC8042129.
  34. Ang K, Chin Z, Zhang H, Guan C. Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface. Proceedings of the International Joint Conference on Neural Networks; 2008 June 1–8; Hong Kong, China; p. 2390–7. DOI: 10.1109/ IJCNN.2008.4634130.
  35. Osokin AA. Submodulyarnaya relaksatsiya v zadache minimizatsii energii markovskogo sluchaynogo polya [dissertation]. М., 2014. Russian.
  36. Thomas BE, John SK, Abe S. Power Spectral Density (PSD) Computation using Modified Welsh Method. Int J Sci Technol Engeneer. 2015; 2 (4): 145–52.
  37. Kostenko EV, Petrova LV, Pogonchenkova IV, Neprintseva NV, Shurupova ST, Kopysheva VD, et al. Innovative technologies and multimodal correction in medical rehabilitation of motor and neuropsychiatric disorders due to stroke. Questions of balneology, physiotherapy and physical therapy. 2022; 99 (6): 67–78. DOI: 10.17116/kurort20229906167. Russian.
  38. Assis G, Brandao A, Corrêa AG, Castellano G. Characterization of functional connectivity in chronic stroke subjects after augmented reality training. Virtual Worlds. 2023; 2 (1): 1–15. DOI: 10.3390/ virtualworlds2010001.
  39. Sota K, Uchiyama Y, Ochi M, Matsumoto S, Hachisuka K, Domen K. Examination of factors related to the effect of improving gait speed with functional electrical stimulation intervention for stroke patients. PM R. 2018; 10 (8): 798–805. DOI: 10.1016/j.pmrj.2018.02.012. PMID: 29518588.
  40. Jaqueline da Cunha M, Rech KD, Salazar AP, Pagnussat AS. Functional electrical stimulation of the peroneal nerve improves post-stroke gait speed when combined with physiotherapy. A systematic review and meta-analysis. Ann Phys Rehabil Med. 2021; 64 (1): 101388. DOI: 10.1016/j.rehab.2020.03.012. PMID: 32376404.
  41. Cardoso LRL, Bochkezanian V, Forner-Cordero A, MelendezCalderon A, Bo APL. Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions. J Neuroeng Rehabil. 2022; 19 (1): 66. DOI: 10.1186/s12984-02201043-1. PMID: 35773733. PMCID: PMC9245887.
  42. Zulauf-Czaja A, Al-Taleb MKH, Purcell M, Petric-Gray N, Cloughley J, Vuckovic A. On the way home: a BCI-FES hand therapy self-managed by sub-acute SCI participants and their caregivers: a usability study. J Neuroeng Rehabil. 2021; 18 (1): 44. DOI: 10.1186/s12984-021-00838-y. PMID: 33632262. PMCID: PMC7905902.
  43. Meng Q, Zeng Q, Xie Q, Fei C, Kong B, Lu X, et al. Flexible lower limb exoskeleton systems: A review. NeuroRehabilitation. 2022; 50 (4): 367–90. DOI: 10.3233/NRE-210300. PMID: 35147568.
  44. Hussain F, Goecke R, Mohammadian M. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods. Proc Inst Mech Eng H. 2021; 235 (12): 1375–85. DOI: 10.1177/09544119211032010. PMID: 34254562.
  45. Su D, Hu Z, Wu J, Shang P, Luo Z. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Front Neurorobot. 2023; 17: 1186175. DOI: 10.3389/fnbot.2023.1186175. PMID: 37465413. PMCID: PMC10350518.
  46. Klochkov AS, Zimin AA, Khizhnikova AE, Suponeva NA, Piradov MA. Effect of robot-assisted gait training on biomechanics of ankle joint in patients with post-stroke hemiparesis. Bulletin of RSMU. 2020; 5: 47–57. DOI: 10.24075/vrgmu.2020.066. Russian.
  47. Suarez-Escobar M, Rendon-Velez E. An overview of robotic/ mechanical devices for post-stroke thumb rehabilitation. Disabil Rehabil Assist Technol. 2018; 13 (7): 683–703. DOI: 10.1080/17483107.2018.1425746. PMID: 29334274.