ORIGINAL RESEARCH
Assessing biodistribution of biomedical cellular product based on human chondrocytes following implantation to BALB/C nude mice
1 Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
2 Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
3 Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
Correspondence should be addressed: Arina S. Pikina
Malaya Pirogovskaya, 1а, Moscow, 119435, Russia; ur.xednay@anikip.anira
Funding: the study was performed under the State Assignment “Chondrosphere”, R&D project ID АААА-А19-119052890054-4.
Acknowledgments: the authors express their gratitude to the research staff of the laboratory of cell biology, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA of Russia, for methodological support provided during the study.
Author contribution: Pikina AS — literature review, literature source collection and analysis, manuscript writing; Golubinskaya PA — data acquisition and analysis, manuscript editing; Ruchko ES — data acquisition and analysis; Kozhenevskaya EV — carrying out work at the vivarium; Pospelov AD — histological analysis; Babayev AA — animal experiment management; Eremeev AV — experimental design, final correction of the manuscript. All authors confirm compliance of authorship to ICMJE international criteria.
Compliance with the ethical standards: the study was approved by the Boethics Commission of the Lobachevsky State University of Nizhny Novgorod (protocol № 73 dated 17 April 2023).
- Ramezankhani R, Torabi S, Minaei N, Madani H, Rezaeiani S, Hassani SN, et al. Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies. Front Cell Dev Biol. 2020; 8: 547653. DOI: 10.3389/fcell.2020.547653.
- Kim J, Park J, Song SY, Kim E. Advanced Therapy medicinal products for autologous chondrocytes and comparison of regulatory systems in target countries. Regen Ther. 2022; 20: 126–37. DOI: 10.1016/j.reth.2022.04.004.
- Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with ACI. N Engl J Med. 1994; 331 (14): 889–95.
- Fontana A, Bistolfi A, Crova M, Rosso F, Massazza G. Arthroscopic treatment of hip chondral defects: Autologous chondrocyte transplantation versus simple debridement —A pilot study. Arthrosc — J Arthrosc Relat Surg. 2012; 28 (3): 322–9. DOI: 10.1016/j.arthro.2011.08.304.
- Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: Two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014; 42 (6): 1384–94. DOI: 10.1177/0363546514528093.
- Yoon KH, Yoo JD, Choi CH, Lee J, Lee JY, Kim SG, et al. Costal Chondrocyte–Derived Pellet-Type Autologous Chondrocyte Implantation versus Microfracture for Repair of Articular Cartilage Defects: A Prospective Randomized Trial. Cartilage. 2021; 13 (1): 1092S–1104S. DOI: 10.1177/1947603520921448.
- Hoburg A, Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, et al. Matrix-Associated Autologous Chondrocyte Implantation with Spheroid Technology Is Superior to Arthroscopic Microfracture at 36 Months Regarding Activities of Daily Living and Sporting Activities after Treatment. Cartilage. 2021; 13 (1): 437S–448S. DOI: 10.1177/1947603519897290.
- Zscharnack M, Krause C, Aust G, Thümmler C, Peinemann F, Keller T, et al. Preclinical good laboratory practice-compliant safety study to evaluate biodistribution and tumorigenicity of a cartilage advanced therapy medicinal product (ATMP). J Transl Med. 2015; 13 (1): 1–17. DOI: 10.1186/s12967-015-0517-x.
- Fickert S, Gerwien P, Helmert B, Schattenberg T, Weckbach S, Kaszkin-Bettag M, et al. One-Year Clinical and Radiological Results of a Prospective, Investigator-Initiated Trial Examining a Novel, Purely Autologous 3-Dimensional Autologous Chondrocyte Transplantation Product in the Knee. Cartilage. 2012; 3 (1): 27– 42. DOI: 10.1177/1947603511417616.
- Spherox. European Medicines Agency. [cited 2023 Oct 26]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/spherox.
- Study Details. The Post-marketing Surveillance to Evaluate the Efficacy of CHONDRON (Autologous Cultured Chondrocyte) by Arthroscopy. ClinicalTrials.gov. [cited 2023 Oct 26]. Available from: https://clinicaltrials.gov/study/NCT02539069?cond=Osteoarthritis&intr=Chondrocytes&page=2&rank=13.
- Choi NY, Kim BW, Yeo WJ, Kim HB, Suh DS, Kim JS, et al. Gel-type autologous chondrocyte (Chondron) implantation for treatment of articular cartilage defects of the knee. BMC Musculoskelet Disord. 2010; 11. DOI: 10.1186/1471-2474-11-103.
- Pathak S, Chaudhary D, Reddy KR, Acharya KKV, Desai SM. Efficacy and safety of CARTIGROW® in patients with articular cartilage defects of the knee joint: a four year prospective studys. Int Orthop. 2022; 46 (6): 1313–21. DOI: 10.1007/s00264-022-05369-2.
- Crowe R, Willers C, Cheng T, Wang L, Zheng MH. Evaluation of Intraoperative Retention of Autologous Chondrocytes on Type I/III Collagen Scaffold (Ortho-ACITM) for Cartilage Repair. J Foot Ankle Res. 2015; 8 (S2): 2015. DOI: 10.1186/1757-1146-8-s2-p10.
- Riedl M, Vadalà G, Papalia R, Denaro V. Three-dimensional, Scaffold-Free, Autologous Chondrocyte Transplantation: A Systematic Review. Orthop J Sport Med. 2020; 8 (9): 1–7. DOI: 10.1177/2325967120951152.
- Shah SS, Mithoefer K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage. 2021; 13 (1): 1195S–1205S. DOI: 10.1177/1947603520968884.
- Schubert T, Anders S, Neumann E. Long-term effects of chondrospheres on cartilage lesions in an autologous chondrocyte implantation model as investigated in the SCID mouse model. Int J Mol Med. 2009; 23 (4): 455–60. DOI: 10.3892/ijmm_00000151.
- Körsmeier K, Claßen T, Kamminga M, Rekowski J, Jäger M, Landgraeber S. Arthroscopic three-dimensional autologous chondrocyte transplantation using spheroids for the treatment of full-thickness cartilage defects of the hip joint. Knee Surgery, Sport Traumatol Arthrosc. 2016; 24 (6): 2032–7. DOI: 10.1007/ s00167-014-3293-x.
- Niemeyer P, Laute V, Zinser W, John T, Becher C, Diehl P, et al. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surgery, Sport Traumatol Arthrosc. 2020; 28 (4): 1130–43. DOI: 10.1007/s00167-019-05786-8.
- Bartz C, Meixner M, Giesemann P, Roël G, Bulwin GC, Smink JJ. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. J Transl Med. 2016; 14 (1): 1–15. DOI: 10.1186/s12967-016-1065-8.
- Приказ Министерства здравоохранения Российской Федерации от 30 октября 2018 г. 512Н «Об утверждении правил надлежащей практики по работе с биомедицинскими клеточными продуктами». С. 1–71.
- Satué M, Schüler C, Ginner N, Erben RG. Intra-articularly injected mesenchymal stem cells promote cartilage regeneration, but do not permanently engraft in distant organs. Sci Rep. 2019; 9 (1): 1–10. DOI: 10.1038/s41598-019-46554-5.
- Marquina M, Collado JA, Pérez-Cruz M, Fernández-Pernas P, Fafián-Labora J, Blanco FJ, et al. Biodistribution and immunogenicity of allogeneic mesenchymal stem cells in a rat model of intraarticular chondrocyte xenotransplantation. Front Immunol. 2017; 8 (NOV): 1–14. DOI: 10.3389/fimmu.2017.01465.
- Erben RG, Silva-Lima B, Reischl I, Steinhoff G, Tiedemann G, Dalemans W, et al. White paper on how to go forward with cellbased advanced therapies in Europe. Tissue Eng — Part A. 2014; 20 (19–20): 2549–54. DOI: 10.1089/ten.tea.2013.0589.
- Federal'nyy zakon ot 23 iyunya 2016 g. №180-FZ «O biomeditsinskikh kletochnykh produktakh». Russian.
- GOST 33044-2014. Printsipy nadlezhashchey laboratornoy praktiki. Mezhgosudarstvennyy standart. Data vvedeniya: 1 avgusta 2015 g. Russian.
- Mironov AN, Bunyatyan ND. Rukovodstvo po provedeniyu doklinicheskikh issledovaniy lekarstvennykh sredstv. M.: Grif i K, 2012; 944 p. Russian.
- Eremeev AV, Belikova LD, Ruchko EA, Volovikov EA, Zubkova OA, Emelin AM, et al. Brain Organoid Generation from Induced Pluripotent Stem Cells in Home-Made Mini Bioreactors. J Vis Exp. 2021; 2021 (178). DOI: 10.3791/62987.
- Chen Y, Ma M, Teng Y, Cao H, Yang Y, Wang Y, et al. Efficient manufacturing of tissue engineered cartilage: In vitro by a multiplexed 3D cultured method. J Mater Chem B. 2020; 8 (10): 2082–95. DOI: 10.1039/c9tb01484e.
- Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P, et al. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One. 2017; 12 (12): 1–16. DOI: 10.1371/journal.pone.0189428.