Isolation and characterization of virulent bacteriophages against Klebsiella pneumoniae of significant capsular types

About authors

1 Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical Biological Agency, Moscow, Russia

2 Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia

3 Sklifosovsky Research Institute for Emergency Medicine, Moscow, Russia

Correspondence should be addressed: Roman B. Gorodnichev
Malaya Pirogovskaya, 1а, Moscow, 119435, Russia; moc.liamg@b.r.vehcindorog

About paper

Funding: the study was conducted under the State Assignment “Development of a Complex Treatment Regimen for Drug-Resistant Pathogens Causing Infectious Diseases Using Bacteriophages and their Derivatives in Combination with Antimicrobial Drugs” (code: Bacteriophage-2). The Klebsiella pneumoniae strain typing was supported by the Russian Science Foundation grant (№ 22-15-00149, https://rscf.ru/project/22-15-00149/).

Acknowledgements: the whole-genome sequencing data were acquired using the equipment provided by the Core Facility Center “Genomics, Proteomics, Metabolomics” (http://rcpcm.org/?p=2806).

Author contribution: Gorodnichev RB — study plan, data acquisition and processing, manuscript writing; Kornienko MA — study plan, data acquisition and processing; Bespiatykh DA — data processing; Malakhova MV, Krivulia AO — data acquisition; Veselovsky VA, Goloshchapov OV, Chernenkaya TV, Bespyatykh YuA — data acquisition and processing; Shitikov EA — study plan, о data processing, manuscript writing.

Compliance with the ethical standards: experimental procedure was compliant with SanPiN 3.3686-21 “Sanitary Epidemiological Requirements for the Prevention of Infectious Diseases”; SanPiN 2.1.3684-21 “Sanitary and Epidemiological Requirements for the Maintenance of the Territories of Urban and Rural Settlements, for Water Bodies, Drinking Water and Drinking Water Supply, Atmospheric Air, Soils, Residential Premises, Operation of Industrial and Public Premises, Organization and Conduct of Sanitary and Anti-Epidemic (Preventive) Measures”, as well as Federal Clinical Guidelines "Rational Use of Bacteriophages in Clinical and Epidemiological Practice".

Received: 2023-11-01 Accepted: 2023-12-14 Published online: 2023-12-31
  1. He Y, Li W, Wang Z, Chen H, Tian L, et al. Nosocomial infection among patients with COVID-19: A retrospective data analysis of 918 cases from a single center in Wuhan, China. Infect Control Hosp Epidemiol. 2020; 41 (8): 982–3.
  2. European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net). AER for 2021. Surveillance report, 2022; p. 20.
  3. Sukhorukova MV, Edelstein MV, Ivanchik NV, Skleenova EYu, Shajdullina ER, Azyzov IS, et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: Results of multicenter epidemiological study «MARATHON 2015–2016». Clinical Microbiology and Antimicrobial Chemotherapy. 2019; 21 (2): 147–59. Russian.
  4. Li D, Huang X, Rao H, Yu H, Long S, Li Y, et al. Klebsiella pneumoniae bacteremia mortality: a systematic review and metaanalysis. Front Cell Infect Microbiol. 2023; 13 (April): 1–9.
  5. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629–55.
  6. Górski A, Międzybrodzki R, Węgrzyn G, Jończyk‐Matysiak E, Borysowski J, Weber–Dąbrowska B. Phage therapy: Current status and perspectives. Med Res Rev. 2020; 40 (1): 459–63.
  7. Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect Dis. 2020; 7 (9): ofaa389.
  8. Dedrick RM, Smith BE, Cristinziano M, Freeman KG, JacobsSera D, Belessis Y, et al. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clin Infect Dis. 2023; 76 (1): 103–12.
  9. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017; 61 (10): 1–15.
  10. Kuptsov NS, Kornienko MA, Gorodnichev RB, Danilov DI, Parfenova TV, Makarenko GI, et al. Efficacy of commercial bacteriophage products against ESKAPE pathogens. Bulletin of RSMU. 2020; 3 (2020): 19–26. Russian.
  11. Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016; 100 (5): 2141–51.
  12. Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, et al. The diversity of Klebsiella pneumoniae surface polysaccharides. Microb genomics. 2016; 2 (8): e000073.
  13. Liao CH, Huang YT, Hsueh PR. Multicenter surveillance of capsular serotypes, virulence genes, and antimicrobial susceptibilities of Klebsiella pneumoniae causing bacteremia in Taiwan, 2017– 2019. Front Microbiol. 2022; 13: 783523.
  14. Jin Y, Dong C, Shao C, Wang Y, Liu Y. Molecular epidemiology of clonally related Metallo-β-Lactamase-Producing Klebsiella pneumoniae isolated from newborns in a hospital in Shandong, China. Jundishapur Journal of Microbiology. 2017; 10 (9): 14046.
  15. Rojas LJ, Weinstock GM, De La Cadena E, Diaz L, Rios R, Hanson BM, et al. An analysis of the epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: convergence of two evolutionary mechanisms creates the “Perfect Storm”. J Infect Dis. 2018: 217 (1): 82–92.
  16. Shaidullina ER, Schwabe M, Rohde T, Shapovalova VV, Dyachkova MS, Matsvay AD, et al. Genomic analysis of the international highrisk clonal lineage Klebsiella pneumoniae sequence type 395. Genome Med. 2023; 15 (1): 17.
  17. Egorov SK, Semenov VM, Dmitrachenko TI. Analysis of Klebsiella pneumoniae isolates with extremely high antibiotic resistance. Paediatrics. Eastern Europe. 2022; 10 (3): 325–33. Russian.
  18. Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001; 73 (4): 746–50.
  19. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C, et al. Wzi gene sequencing, a rapid method for determination of capsulartype for klebsiella strains. J Clin Microbiol. 2013; 51 (12): 4073–8.
  20. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by the Direct Plating Plaque Assay. Methods Mol Biol. 2009; 501: 77–80.
  21. Gorodnichev RB, Kornienko MA, Kuptsov NS., Malakhova MV, Bespiatykh DA, Veselovsky VA, et al. Molecular genetic characterization of three new Klebsiella pneumoniae bacteriophages suitable for phage therapy. Extreme medicine. 2021; 23 (3): 90–7. Russian.
  22. Green MR, Sambrook J. Molecular cloning. A Laboratory Manual 4th. Cold Spring Harbor Laboratory, 2012; p. 1936.
  23. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB. 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019; 47 (D1): D687–D692.
  24. Liu B, Pop M. ARDB — Antibiotic resistance genes database. Nucleic Acids Res. 2009; 37 (SUPPL 1): 443–7.
  25. Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics. 2017; 33 (21): 3396–404.
  26. Darzentas N. Circoletto: visualizing sequence similarity with Circos. Bioinformatics. 2010; 26 (20): 2620–1.
  27. Fursova NK, Astashkin EI, Ershova ON, Aleksandrova IA, Savin IA, Novikova TS, et al. Multidrug-resistant Klebsiella pneumoniae causing severe infections in the neuro-ICU. Antibiotics. 2021; 10 (8): 1–17.
  28. Beamud B, García-González N, Gómez-Ortega M, GonzálezCandelas F, Domingo-Calap P, Sanjuan R. Genetic determinants of host tropism in Klebsiella phages. Cell Rep. 2023; 42 (2): 112048.
  29. Turner D, Kropinski AM, Adriaenssens EM. A roadmap for genome-based phage taxonomy. Viruses. 2021; 13 (3): 506.