ОБЗОР

Уровни специфичных IgG к пищевым антигенам в норме и при патологии

Информация об авторах

Федеральный исследовательский центр комплексного изучения Арктики имени академика Н. П. Лавёрова Уральского отделения Российской академии наук, Архангельск, Россия

Для корреспонденции: Вероника Павловна Патракеева
пр. Никольской, д. 20, г. Архангельск, 163020, Россия; ur.xednay@akinorev.aweekartap

Информация о статье

Финансирование: работа выполнена за счет средств гранта РНФ № 22-25-20145 «Выяснение механизмов влияния снижения толерантности к пищевым антигенам на утилизацию глюкозы».

Вклад авторов: В. П. Патракеева — планирование исследования, сбор и анализ литературы, подготовка рукописи; В. А. Штаборов — сбор и анализ литературы; Р. С. Алесич — сбор и анализ литературы.

Статья получена: 12.09.2023 Статья принята к печати: 08.11.2023 Опубликовано online: 27.11.2023
|
  1. Ma Y, Yin Z, Li L, Chen B, Dai H, Wu D, et al. Food antigens exacerbate intestinal damage and inflammation following the disruption of the mucosal barrier. International Immunopharmacology. 2021; 96: 107670. DOI: 10.1016/j.intimp.2021.107670.
  2. Bjarnason I, Takeuchi K. Intestinal permeability in the pathogenesis of NSAID-induced enteropathy. J. Gastroenterol. 2009; 44 (19): 23–9. DOI: 10.1007/s00535-008-2266-6.
  3. Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory. Drugs. Gastroenterology. 2018; 154 (3): 500–14. DOI: 10.1053/j.gastro.2017.10.049.
  4. Colucci R, Pellegrini C, Fornai M, Tirotta E, Antonioli L, Renzulli C, et al. Pathophysiology of NSAID-Associated Intestinal Lesions in the Rat: Luminal Bacteria and Mucosal Inflammation as Targets for Prevention. Front Pharmacol. 2018; 9: 1340. DOI: 10.3389/fphar.2018.01340.
  5. D'Inca MR. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015; 628157. DOI: 10.1155/2015/628157.
  6. Fukui H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflamm Intest. Dis. 2016; 1 (3): 135–45. DOI: 10.1159/000447252.
  7. Graziani C, Talocco C, Sire R De, Petito V, Lopetuso LR, Gervasoni J, et al. Intestinal permeability in physiological and pathological conditions: major determinants and assessment modalities. Eur Rev Med Pharmacol Sci. 2019; 23 (2): 795–810. DOI: 10.26355/ eurrev_201901_16894.
  8. Niewiem M, Grzybowska-Chlebowczyk U. Intestinal barrier permeability in allergic diseases. Nutrients. 2022; 14 (9): 1893. DOI: 10.3390/nu14091893.
  9. Gertie JA, Zhang B, Liu EG, Hoyt LR, Yin X, Xu L, et al. Oral anaphylaxis to peanut in a mouse model is associated with gut permeability but not with Tlr4 or Dock8 mutations. Journal of Allergy and Clinical Immunology. 2022; 149: 262–74. DOI: 10.1016/j.jaci.2021.05.015.
  10. Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 2017; 11 (9): 821–34. DOI: 10.1080/17474124.2017.1343143.
  11. Vojdani A, Gushgari LR, Vojdani E. Interaction between food antigens and the immune system: Association with autoimmune disorders. Autoimmunity Reviews. 2020; 19 (3): 1–15. DOI: 10.1016/j.autrev.2020.102459.
  12. Boye JI. Food allergies in developing and emerging economies: need for comprehensive data on prevalence rates. Clinical and Translational Allergy. 2012; 2: 1–9. DOI: 10.1186/2045-7022-2-25.
  13. Fu L, Cherayil BJ, Shi H, Wang Y, Zhu Y. Risk assessment and control management of food allergens. Food Allergy. 2019; 195– 216. DOI: 10.1007/978-981-13-6928-5_9.
  14. Ramachandran B, Yang CT, Downs ML. Parallel reaction monitoring mass spectrometry method for detection of both casein and whey milk allergens from a baked food matrix. Journal of Proteome Research. 2020; 19 (8): 2964–76. DOI: 10.1021/acs. jproteome.9b00844.
  15. Onoda Y, Aoki Y, Nagai A, Nakamura M, Suzuki K, Futamura K, et al. A case of hen’s egg-dependent exercise-induced immediatetype allergy. Allergology International. 2020; 69 (3): 476–7. DOI: 10.1016/j.alit.2020.01.006.
  16. Gupta RS, Warren CM, Smith BM, Jiang J, Blumenstock JA, Davis MM, et al. Prevalence and severity of food allergies among US adults. The Journal of American Medical Association Network Open. 2019; 2 (1): e185630. DOI: 10.1001/jamanetworkopen.2018.5630.
  17. Davis CM, Gupta RS, Aktas ON, Diaz V, Kamath SD, Lopata AL. Clinical management of seafood allergy. Journal of Allergy and Clinical Immunology: In Practice. 2020; 8 (1): 37–44. DOI: 10.1016/j.jaip.2019.10.019.
  18. Noah TK, Knoop KA, McDonald KG, Gustafsson JK, Waggoner L, Vanoni S, et al. 9 IL-13–induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. Journal of Allergy and Clinical Immunology. 2019; 144 (4): 1058–1073.e3. DOI: 10.1016/j.jaci.2019.04.030.
  19. Kulkarni DH, Gustafsson JK, Knoop KA, McDonald KG, Bidani SS, Davis JE, et al. Goblet cell associated antigen passages support the induction and maintenance of oral tolerance. Mucosal Immunology. 2020; 13: 271–82. DOI: 10.1038/s41385-019-0240-7.
  20. Khuda SE, Nguyen AV, Sharma GM, Alam MS, Balan KV, Williams KM. Effects of emulsifiers on an in vitro model of intestinal epithelial tight junctions and the transport of food allergens. Molecular Nutrition & Food Research. 2022; 66: e2100576. DOI: 10.1002/ mnfr.202100576.
  21. Nešić A, Čavić M, Popović M, Zlatanova M, Pieters R, Smit J, et al. The Kiwifruit Allergen Act d 1 activates NF-κB signaling and affects mRNA expression of TJ proteins and innate pro-allergenic cytokines. Biomolecules. 2019; 9 (12): 816. DOI: 10.3390/ biom9120816.
  22. Быков А. С., Караулов А. В., Цомартова Д. А., Карташкина Н. Л., Горячкина В. Л., Кузнецов С. Л. и др. М-клетки — один из важных компонентов в инициации иммунного ответа в кишечнике. Инфекция и иммунитет. 2018; № 8 (3): 263–72.
  23. Rescigno M, Urbano M, Valzasina B, Rotta G, Bonasio R, Granucci F, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001; 2: 361–7. DOI: 10.1038/86373.
  24. Rescigno M, Rotta G, Valzasina B, Ricciardi-Castagnoli P. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology. 2001; 204: 572–81. DOI: 10.1078/0171-2985-00094.
  25. Zeng Q, Dong S-Y, Wu L-X, Li H, Sun Z-J, Li J-B, et al. Variable food-specific IgG antibody levels in healthy and symptomatic Chinese adults. PLoS One. 2013; 8 (1): e53612. DOI: 10.1371/ journal.pone.0053612.
  26. Shakoor Z, AlFaifi A, AlAmro B, AlTawil LN, AlOhaly RY. Prevalence of IgG-mediated food intolerance among patients with allergic symptoms. Ann Saudi Med. 2016; 36 (6): 386–90. DOI: 10.5144/0256-4947.2016.386.
  27. Lu S, Wan JS, Su Y, Wu J. Detection and analysis of serum food-specific IgG antibody in Beijing area. Zhonghua Yu Fang Yi Xue Za Zhi. 2021; 55 (2): 253–7. DOI: 10.3760/ cma.j.cn112150-20201027-01309.
  28. Young E, Stoneham MD, Petruckevitch A, Barton J, Rona R. A population study of food intolerance. Lancet. 1994; 343: 1127– 30. DOI: 10.1016/s0140-6736(94)90234-8.
  29. Schäfer T, Böhler E, Ruhdorfer S, Weigl L, Wessner D, Heinrich J, et al. Epidemiology of food allergy/food intolerance in adults: associations with other manifestations of atopy. Allergy. 2001; 56: 1172–9. DOI: 10.1034/j.1398-9995.2001.00196.x.
  30. Zaitsu M, Narita S-I, Lambert KC, Grady JJ, Estes DM, Curran EM, et al. Estradiol activates mast cells via a non-genomic estrogen receptor-alpha and calcium influx. Molecular immunology. 2007; 44: 1977–85. DOI: 10.1016/j.molimm.2006.09.030.
  31. Watanabe Y, Tajiki-Nishino R, Tajima H, Fukuyama T. Role of estrogen receptors α and β in the development of allergic airway inflammation in mice: A possible involvement of interleukin 33 and eosinophils. Toxicology. 2019; 411 (1): 93–100. DOI: 10.1016/j. tox.2018.11.002.
  32. Tao R, Fu Z, Xiao L. Chronic food antigen-specific IgG-mediated hypersensitivity reaction as a risk factor for adolescent depressive disorder. Genomics, Proteomics & Bioinformatics. 2019; 17 (2): 183–9. DOI: 10.1016/j.gpb.2019.05.002.
  33. Wang G, Ren J, Li G, Hu Q, Gu G, Ren H, et al. The utility of food antigen test in the diagnosis of Crohn's disease and remission maintenance after exclusive enteral nutrition. Clinics and Research in Hepatology and Gastroenterology. 2018; 42 (2): 145–52. DOI: 10.1016/j.clinre.2017.09.002.
  34. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017; 8: 598. DOI: 10.3389/fimmu.2017.00598.
  35. Vojdani A. Molecular mimicry as a mechanism for food immune reactivities and autoimmunity. Altern Ther Health Med. 2015; 21 (1): 34–45.
  36. Riemekasten G, Marell J, Hentschel C, Klein R, Burmester G-R, Schoessler W, et al. Casein is an essential cofactor in autoantibody reactivity directed against the C-terminal SmD1 peptide AA 83119 in systemic lupus erythematosus. Immunobiology. 2002; 206: 537–54. DOI: 10.1078/0171-2985-00202.
  37. Gershteyn IM, Ferreira LMR. Immunodietica: A data-driven approach to investigate interactions between diet and autoimmune disorders. J Transl Autoimmun. 2019; 28 (1): 100003. DOI: 10.1016/j.jtauto.2019.100003.
  38. Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, et al. Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J. 2000; 19 (16): 4402–11. DOI: 10.1093/emboj/19.16.4402.
  39. Swoboda I, Bugajska-Schretter A, Verdino P, Keller W, Sperr WR, Valent P. Recombinant carp parvalbumin, the major crossreactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol. 2002; 168: 4576–84. DOI: 10.4049/jimmunol.168.9.4576.
  40. Liu R, Holck AL, Yang E, Liu C, Xue W. Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clin Exp Allergy. 2013; 43 (3): 365–77. DOI: 10.1111/cea.12056.
  41. Vojdani A, O’Bryan T, Green JA, Mccandless J, Woeller KN, Vojdani E, et al. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr Neurosci. 2004; 7: 151–61. DOI: 10.1080/10284150400004155.
  42. Kohno T, Kobashiri Y, Sugie Y, Takai S, Watabe K, Kaino Y. Antibodies to food antigens in Japanese patients with type 1 diabetes mellitus. Diabetes Research and Clinical Practice. 2002; 55 (1): 1–9. DOI: 10.1016/s0168-8227(01)00250-9.
  43. Natter S, Granditsch G, Reichel GL, Baghestanian M, Valent P, Elfman L. IgA cross-reactivity between a nuclear autoantigen and wheat proteins suggests molecular mimicry as a possible pathomechanism in celiac disease. Eur J Immunol. 2001; 31: 918–28. DOI: 10.1002/1521-4141(200103)31:3<918::aidimmu918>3.0.co;2-u.
  44. Vojdani A, Kharrazian D, Mukherjee PS. The prevalence of antibodies against wheat and milk proteins in blood donors and their contribution to neuroimmune reactivities. Nutrients. 2013; 6 (1): 15–36. DOI: 10.3390/nu6010015.
  45. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Anti-aquaporin-4 antibody induces astrocytic cytotoxicity in the absence of CNS antigen-specific T cells. Biochem Biophys Res Commun. 2010; 394 (1): 205–10. DOI: 10.1016/j. bbrc.2010.02.157.
  46. Черевко Н. А., Скирневская А. В., Розенштейн М. Ю., Новиков П. С., Муравейник О. А. Особенности специфической гиперчувствительности к пищевым антигенам молочного и злакового кластеров у детей с расстройством аутистического спектра. Бюллетень сибирской медицины. 2018; 17 (1): 159–66.
  47. Новиков П. С., Черевко Н. А., Кондаков С. Э., Резапов Б. Р. Гиперчувствительность к пищевым антигенам как предиктор развития метаболического синдрома. Цитокины и воспаление. 2016; 15 (3–4): 280–4.
  48. Новиков П. С., Черевко Н. А., Кондаков С. Э. Специфическая гиперчувствительность к пищевым антигенам — триггер развития анемии и гипотириоза. Российский иммунологический журнал. 2017; 11 (4): 740–2.
  49. Kaličanin D, Brčić L, Barić A, Zlodre S, Barbalić M, Lovrić TV. Evaluation of Correlations Between Food-Specific Antibodies and Clinical Aspects of Hashimoto's Thyroiditis. J Am Coll Nutr. 2019; 38 (3): 259–66. DOI: 10.1080/07315724.2018.1503103.
  50. Smeekens J, Johnson B, Hinton A, Azcárate-Peril MA. Food antigen sensitization in genetically-susceptible mice is influenced by fecal IgA, antigen absorption, and gut microbiome composition. Journal of Allergy and Clinical Immunology. 2021; 147 (2): AB142. DOI: 10.1016/j.jaci.2020.12.516.
  51. Добродеева Л. К., Штаборов В. А., Меньшикова Е. А. Толерантность к пищевым антигенам. Вестник Уральской медицинской академической науки. 2017; 14 (4): 341–54.