ORIGINAL RESEARCH
Electron microscopy of the Plasmodium falciparum trophozoites and the tissues these have infected in severe tropical malaria
1 Kirov Military Medical Academy, Saint-Petersburg, Russia
2 Botkin Clinical Infectious Diseases Hospital, Saint-Petersburg, Russia
3 Pediatric Research and Clinical Center of Infectious Diseases of the Federal Medical Biological Agency, Saint Petersburg, Russia
Correspondence should be addressed: Artem R. Ariukov
Akademika Lebedeva, 6, Saint-Petersburg, 194044, Russia; аur.xednay@metra.vokur
Author contribution: Solovev AI — concept, scientific justification, organization of all types of tests, analysis of the results, manuscript writing; Kapacina VA — data acquisition, practical advising; Sokolova MO, Ariukov AR — sample preparation, light microscopy, analysis of the results, manuscript writing; Kovalenko AN — practical justification, organization of data acquisition, manuscript editing; Uskov AN — concept, scientific advising; Romanenko VA — sample preparation, light microscopy, analysis of the results.
Compliance with ethical standards: the study was approved by the Ethics Committee of the Kirov Military Medical Academy (protocol No. 285 dated 21 November 2023) and conducted in accordance with the principleы of the Declaration of Helsinki (1964) and its subsequent updates.
- Venkatesan P. The 2023 WHO World malaria report. The Lancet Microbe. 2024.
- Lee WC, Russell B, Rénia L. Evolving perspectives on rosetting in malaria. Trends in Parasitology. 2022; 38 (10): 882–9.
- Abdi A, Yu L, Goulding D, Rono MK, Bejon P, Choudhary J, et al. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome open research. 2017; 2.
- Heiber A, Kruse F, Pick C, Grüring C, Flemming S, Oberli A, et al. Identification of new PNEPs indicates a substantial non-PEXEL exportome and underpins common features in Plasmodium falciparum protein export. PLoS pathogens. 2013; 9 (8): e1003546.
- McHugh E, Carmo OM, Blanch A, Looker O, Liu B, Tiash S, et al. Role of Plasmodium falciparum protein GEXP07 in Maurer’s cleft morphology, knob architecture, and P. falciparum EMP1 trafficking. MBio. 2020; 11 (2): 10–1128.
- Yadavalli R, Peterson JW, Drazba JA, Sam-Yellowe TY. Trafficking and Association of Plasmodium falciparum MC-2TM with the Maurer’s Clefts. Pathogens. 2021; 10 (4): 431.
- Ortolan LS, Avril M, Xue J, Seydel KB, Zheng Y, Smith JD. Plasmodium falciparum parasite lines expressing DC8 and Group A PfEMP1 bind to brain, intestinal, and kidney endothelial cells. Frontiers in Cellular and Infection Microbiology. 2022; 12: 813011.
- Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1‐based vaccines to prevent it. Immunological reviews. 2020; 293 (1): 230–52.
- Juillerat A, Lewit-Bentley A, Guillotte M, Gangnard S, Hessel A, Baron B, et al. Structure of a Plasmodium falciparum PfEMP1 rosetting domain reveals a role for the N-terminal segment in heparin-mediated rosette inhibition. Proceedings of the National Academy of Sciences. 2011; 108 (13): 5243–8.
- Mwenda MC, Fola AA, Ciubotariu II, Mulube C, Mambwe B, Kasaro R, et al. Performance evaluation of RDT, light microscopy, and PET-PCR for detecting Plasmodium falciparum malaria infections in the 2018 Zambia National Malaria Indicator Survey. Malaria Journal. 2021; 20: 1–10.
- Soulard V, Bosson-Vanga H, Lorthiois A, Roucher C, Franetich JF, Zanghi G, et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nature communications. 2015; 6 (1): 1–9.
- Liffner B, Diaz AKC, Blauwkamp J, Anaguano D, Frolich S, Muralidharan V, et al. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. Elife. 2023; 12: RP88088.
- Laboratornaja diagnostika maljarii i babeziozov: Metodicheskie ukazanija. M.: FBUZ «Federal'nyj centr gigieny i jepidemiologii» Rospotrebnadzora, 2015; 43 s. Russian.
- Borovskaya MK, Kuznecova YeYe, Gorohova VG, Korjakina LB, Kurilskaya TE, Pivovarov YuI. Strukturno-funkcional'naja harakteristika membrany jeritrocita i ee izmenenija pri patologijah raznogo geneza. Acta Biomedica Scientifica. 2010; 3 (73): 334–54. Russian.
- Melcher M, Muhle RA, Henrich PP, Kraemer SM, Avril M, Vigan-Womas I, et al. Identification of a role for the PfEMP1 semiconserved head structure in protein trafficking to the surface of Plasmodium falciparum infected red blood cells. Cellular microbiology. 2010; 12 (10): 1446–62.
- Kilian N, Zhang Y, LaMonica L, Hooker G, Toomre D, Mamoun CB, et al. Palmitoylated Proteins in Plasmodium falciparum-Infected Erythrocytes: Investigation with Click Chemistry and Metabolic Labeling. BioEssays. 2020; 42 (6): 1900145.
- McDonald J, Merrick CJ. DNA replication dynamics during erythrocytic schizogony in the malaria parasites Plasmodium falciparum and Plasmodium knowlesi. PLoS Pathogens. 2022; 18 (6): e1010595.
- Ostera G, Tokumasu F, Oliveira F, Sa J, Furuya T, Teixeira C, Dvorak J. Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite. Experimental parasitology. 2008; 120 (1): 29–38.
- Mundwiler-Pachlatko E, Beck HP. Maurer's clefts, the enigma of Plasmodium falciparum. Proceedings of the National Academy of Sciences. 2013; 110 (50): 19987–94.
- Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cellular and Molecular Life Sciences. 2020; 77: 1681–94.
- Avril M, Bernabeu M, Benjamin M, Brazier AJ, Smith JD. Interaction between endothelial protein C receptor and intercellular adhesion molecule 1 to mediate binding of Plasmodium falciparum-infected erythrocytes to endothelial cells. MBio. 2016; 7 (4): 10–1128.