ORIGINAL RESEARCH

Comparison of methods for purification of bacteriophage lysates of gram-negative bacteria for personalized therapy

Gorodnichev RB1, Kornienko MA1, Kuptsov NS1, Efimov AD2, Bogdan VI2, Letarov AV2, Shitikov EA1, Ilina EN1
About authors

1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia

2 Federal Research Center of Biotechnology, Moscow, Russia

Correspondence should be addressed: Roman B. Gorodnichev
Malaya Pirogovskaya, 1a, Moscow, 119435; moc.liamg@b.r.vehcindorog

About paper

Funding: all study expenses were covered by the funds allocated for the State Assignment on the Development of a personalized approach to the therapy of infections using virulent bacteriophages (Code: Bacteriophage).

Author contribution: Gorodnichev RB — planned the study, conducted the experiments, and wrote the manuscript; Kornienko MA, Letarov AV, Shitikov EA — planned the study, analyzed its results, and wrote the manuscript; Kuptsov NS, Efimov AD, Bogdan VI — conducted the experiments; Ilina EN — planned the study and wrote the manuscript.

Compliance with ethical standards: the experiments were conducted in full compliance with Biosafety Guidelines for working with risk group III–IV pathogens (SP 1.3.2322-08), Amendment 1 to Biosafety Guidelines for working with risk group III–IV pathogens (SP 1.3.2518-09), medical waste regulations (SanPin 2.1.7.279010), and Federal Clinical Guidelines on the rational use of bacteriophages for therapy and prevention of diseases.

Received: 2021-07-20 Accepted: 2021-08-25 Published online: 2021-09-22
|
  1. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018; 18 (3): 318–27. DOI: 10.1016/S1473-3099(17)30753-3.
  2. Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017; 8 (3): 162. DOI: 10.4292/wjgpt.v8.i3.162.
  3. Akimkin VG, Darbeeva OS, Kolkov VF. Bakteriofagi: istoricheskie i sovremennye aspekty ih primenenija: opyt i perspektivy. Klinicheskaja praktika. 2010; 4 (4): 48–54. Russian.
  4. Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR, et al. Quality and safety requirements for sustainable phage therapy products. Pharm Res. 2015; 32 (7): 2173–9. DOI: 10.1007/s11095-014-1617-7.
  5. Shkoda AS, Mitrohin SD, Vedjashkina SG, Orlova OE, Bastrikin SYu, Galickij AA, i dr. Personalizirovannaja fagoterapija pacientov, stradajushhih infekcijami, svjazannymi s okazaniem medicinskoj pomoshhi: metodicheskie rekomendacii. 2019; 37 s. Dostupno po ssylke: https://niioz.ru/upload/iblock/259/259f65904e633b94 8cd2e6a1d04742f0.pdf. Russian.
  6. Petrovic-Fabijan A, Khalid A, Maddocks S, Ho J, Gilbey T, Sandaradura I, et al. Phage therapy for severe bacterial infections: a narrative review. Med J Aust. 2020; 212 (6): 279–85. DOI: 10.5694/mja2.50355.
  7. Aleshkin AV, Shkoda AS, Bochkareva SS, Ershova ON, Mitrokhin SD, Kiseleva IA, et al. Concept of individualized medicine based on personalized phage therapy for intensive care unit patients suffering from healthcare-associated infections. Infektsionnye Bolezni. 2017; 15 (4): 49–54. DOI: 10.20953/1729-9225-2017-4-49-54.
  8. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994; 8 (2): 217–25. DOI: 10.1096/FASEBJ.8.2.8119492.
  9. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002; 71 (1): 635–700. DOI: 10.1146/annurev. biochem.71.110601.135414.
  10. Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc. 2020; 15 (9): 2867–90. DOI: 10.1038/s41596-020-0346-0.
  11. Guo Y, Cheng A, Wang M, Zhou Y. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation. J Virol Methods. 2009; 161 (1): 1–6. DOI: 10.1016/J.JVIROMET.2008.12.017.
  12. Hietala V, Horsma-Heikkinen J, Carron A, Skurnik M, Kiljunen S. The Removal of Endo- and Enterotoxins From Bacteriophage Preparations. Front Microbiol. 2019; 10: 1674. DOI: 10.3389/ fmicb.2019.01674.
  13. Van Belleghem JD, Merabishvili M, Vergauwen B, Lavigne R, Vaneechoutte M. A comparative study of different strategies for removal of endotoxins from bacteriophage preparations. J Microbiol Methods. 2017; 132: 153–9. DOI: 10.1016/j. mimet.2016.11.020.
  14. Van Twest R, Kropinski AM. Bacteriophage enrichment from water and soil. Methods Mol Biol. 2009; 501: 15–21. DOI: 10.1007/9781-60327-164-6_2.
  15. Cooper CJ, Denyer SP, Maillard J-Y. Stability and purity of a bacteriophage cocktail preparation for nebulizer delivery. Lett Appl Microbiol. 2014; 58 (2): 118–22. DOI: 10.1111/lam.12161.
  16. Merabishvili M, Pirnay J-P, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 2009; 4 (3): 4944. DOI: 10.1371/JOURNAL. PONE.0004944.
  17. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C et al. Wzi gene sequencing, a rapid method for determination of capsulartype for klebsiella strains. J Clin Microbiol. 2013; 51 (12): 4073–8. DOI: 10.1128/JCM.01924-13.
  18. Gorodnichev RB, Volozhantsev NV, Krasilnikova VM, Bodoev IN, Kornienko MA, Kuptsov NS, et al. Novel Klebsiella pneumoniae K23-specific bacteriophages from different families: similarity of depolymerases and their therapeutic potential. Front Microbiol. 2021; 12: 669618. DOI: 10.3389/FMICB.2021.669618.
  19. Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages using the small drop plaque assay system. Bacteriophages. 2009; 81–85. DOI: 10.1007/978-1-60327-164-6.
  20. Maniatis T, Sambrook J, Fritsch EF. Molecular cloning: a laboratory manual. 2th ed. Inglis J. Cold Spring Harbor Laboratory Press. 1984; 2230 p.
  21. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017; 61 (10): 1–15. DOI: 10.1128/AAC.00954-17.
  22. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med Springer US. 2019; 25 (5): 730–33. DOI: 10.1038/s41591-019-0437-z.
  23. Rubalskii E, Ruemke S, Salmoukas C, Boyle EC, Warnecke G, Tudorache I, et al. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics. 2020; 9 (5): 1–12. DOI: 10.3390/ANTIBIOTICS9050232.
  24. Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for chronic wound treatment: from traditional to novel delivery systems. Viruses. 2020; 12 (2): 1–29. DOI: 10.3390/v12020235.
  25. Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother. 2005; 49 (3): 1220–1. DOI: 10.1128/AAC.49.3.1220-1221.2005.
  26. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M, Kuhl S. Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. Journal of wound care. 2016; 25 (Sup 7): 27–33. DOI: 10.12968/JOWC.2016.25.SUP7.S27.
  27. OFS.1.2.4.0006.15 Bakterial'nye jendotoksiny. Farmakopeja. rf [Jelektronnyj resurs]. Dostupno po ssylke: https:// pharmacopoeia.ru/ofs-1-2-4-0006-15-bakterialnye-endotoksiny/ (data obrashhenija: 30.08.2021). Russian.
  28. Zhang ZR, Shen JT, Dai JY, Sun YQ, Dong YS, Xiu ZL. Separation and purification of Klebsiella phage by two-step salting-out extraction. Sep Purif Technol. 2020; 242 (2): 116784. DOI: 10.1016/j.seppur.2020.116784.
  29. Bergstrand A, Svanberg C, Langton M, Nydén M. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surfaces B Biointerfaces. 2006; 53 (1): 9–14. DOI: 10.1016/J.COLSURFB.2006.06.007.