ORIGINAL RESEARCH

Metabolic activity of immunocompetent cells in assessment of individual cold sensitivity

About authors

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia

Correspondence should be addressed: Veronika P. Patrakeeva
Naberezhnaya Severnoi Dviny, 23, Arkhangelsk, 163000, Russia; ur.xednay@akinorev.aweekartap

About paper

Funding: the study was carried out as part of the fundamental research program on the topic of the Laboratory of Ecological Immunology, Institute of Environmental Adaptation Physiology, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, project № 122011300377-5.

Author contributions: Patrakeeva VP — study planning, literature analysis, data acquisition, processing and interpretation, manuscript writing; Schtaborov VA — literature analysis, data acquisition and processing, manuscript writing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences (protocols № 4 and 6 of 7 December 2016 and 14 February 2022, respectively) and carried out in accordance with the principles of the 1975 Declaration of Helsinki (2013).

Received: 2022-10-14 Accepted: 2022-11-02 Published online: 2022-11-17
|
  1. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019; 20 (7): 436–50.
  2. Ferranti CS, Cheng J, Thompson C, Zhang J, Rotolo JA, Buddaseth S, et al. Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis. J Cell Biol. 2020; 219 (4): e201903176.
  3. Newman JC, He W, Verdin E. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease. J Biol Chem. 2012; 287 (51): 42436–43.
  4. Zhang J, Xiang H, Liu J, Chen Y, He R-R, Liu B. Mitochondrial sirtuin 3: new emerging biological function and therapeutic target. Theranostics. 2020; 10 (18): 8315–42.
  5. Reverdy C, Gitton G, Guan X, Adhya I, Krishna Dumpati R, Roy S, et al. Discovery of novel compounds as potent activators of Sirt3. Bioorganic & Medicinal Chemistry. 2022; 73: 116999.
  6. Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 2012; 52: 23–35.
  7. Bagul PK, Katare PB, Bugga P, Dinda AK, Banerjee SK. SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells. 2018; 7 (12): 235.
  8. Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci. 2013; 5: 48.
  9. Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 2012; 52: 23–35.
  10. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Phys Heart Circ Phys. 2014; 306: H1602– H1609.
  11. Bugga P, Alam J, Kumar R, Pal S, Chattopadyay N, Banerjee SK. Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast. Cellular Signalling. 2022; 94: 110309.
  12. Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer. 2008; 8: 705–13.
  13. Patrakeeva VP, Samodova AV. Vlijanie kratkovremennogo obshhego ohlazhdenija na migraciju, recirkuljaciju i jenergeticheskij resurs immunokompetentnyh kletok perifericheskoj krovi cheloveka. Vestnik Ural'skoj medicinskoj akademicheskoj nauki. 2017; 14 (4): 362–8. Russian.
  14. Patrakeeva VP. Izmenenie urovnja limfocitov perifericheskoj venoznoj krovi kak metod ocenki individual'noj holodovoj chuvstvitel'nosti. V sbornike: Jekologicheskij monitoring: metody i podhody. Materialy Mezhdunarodnoj satellitnoj konferencii «Jekologicheskij monitoring: metody i podhody» i HH Mezhdunarodnogo simpoziuma «Slozhnye sistemy v jekstremal'nyh uslovijah». 20–24 sentjabrja 2021 g.; Krasnojarsk, 2021: 170–3. Russian.
  15. Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020; 126 (11): 1477–500.
  16. Després J-P. Body fat distribution and risk of cardiovascular disease. Circulation. 2012; 126 (10): 1301–13.
  17. Sukkriang N, Chanprasertpinyo W, Wattanapisit A, Punsawad C, Thamrongrat N, Sangpoom S. Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine. Heliyon. 2021; 7 (2): e06264.
  18. Gugliucci A. Biomarkers of dysfunctional visceral fat. Advances in Clinical Chemistry. 2022; 109: 1–30.
  19. Addo OY, Mei Z, Hod EA, Jefferds ME, Sharma AJ, Flores-Ayala RS, et al. Physiologically based serum ferritin thresholds for iron deficiency in women of reproductive age who are blood donors. Blood Advances. 2022; 6 (12): 3661–5.
  20. Li M, Tang X, Liao Z, Shen C, Cheng R, Fanget M. Hypoxia and low temperature up-regulate transferrin to induce hypercoagulability at high altitude. Blood. 2022; 2022016410.
  21. Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxiainducible factor (HIF): implications for cellular physiology. J Physiol. 2021; 599 (1): 23–37.
  22. Singh D, Arora R, Kaur P, Singh B, Mannan R, Arora S. Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer. Cell Biosci. 2017; 7: 62.
  23. Sautchuk Jr R, Eliseev RA. Cell energy metabolism and bone formation. Bone Reports. 2022; 16: 101594.
  24. Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K. et al Irisin mediates effects on bone and fat via αV integrin receptors. Cell. 2019; 178 (2): 507–8.
  25. Fu T, Li C, Sun Z, Yan B, Wu Y, Huang Z, et al Integrin αV mediates the effects of irisin on human mature adipocytes. Obes Facts. 2022; 15 (3): 442–50.
  26. Bi J, Zhang J, Ren Y, Du Z, Li T, Wang T, et al Irisin reverses intestinal epithelial barrier dysfunction during intestinal injury via binding to the integrin αVβ5 receptor. J Cell Mol Med. 2020; 24 (1): 996–1009.
  27. Drewlo S, Johnson E, Kilburn BA, Kadam L, Armistead B, KohanGhadr H-R. Irisin induces trophoblast differentiation via AMPK activation in the human placenta. J Cell Physiol. 2020; 235 (10): 7146–58.
  28. Slate-Romano JJ, Yano N, Zhao TC. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Molecular and Cellular Endocrinology. 2022; 552: 111676.
  29. Pescador N, Villar D, Cifuentes D, Garcia-Rocha M, OrtizBarahona A, Vazquez S, et al. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLoS One. 2010; 5: e9644.
  30. Vucetic M, Otasevic V, Korac A, Stancic A, Jankovic A, Markelic M, et al. Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα. Biochimica et Biophysica Acta (BBA) — General Subjects. 2011; 1810 (12): 1252–61.
  31. Xu Y, Alfaro–Magallanes VM, Babitt JL. Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. Br J Haematol. 2021; 193 (5): 882–93.
  32. Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med. 2019; 133: 46–54.