REVIEW

Role of radiology techniques and hybrid PET-MRI technique in the diagnosis of pharmacoresistant epilepsy

Dolgushin MB, Rostovtseva TM, Duyunova AV, Nadelyaev RV, Beregov MM
About authors

Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia

Correspondence should be addressed: Tatiana M. Rostovtseva
Ostovityanov, 1, bld. 10, 117513, Moscow, Russia; ur.liam@tavestvotsor

About paper

Funding: the study was performed as part of the research project “Developing Indications for the Use of Hybrid PET-MRI When Planning Surgery in Patients With Epilepsy”, code: 03.02.VY.

Author contribution: all authors contributed significantly to development of the concept, the study and manuscrit writing, they read and approved the final version of the article before publishing. The most significant contributions are distributed as follows: Dolgushin MB — study concept and plan; Rostovtseva TM, Duyunova AV, Nadelyaev RV Duyunova AV, Nadelyaev RV — data acquisition and analysis; Rostovtseva TM, Duyunova AV, Beregov MM — manuscrit writing.

Received: 2023-03-31 Accepted: 2023-05-14 Published online: 2023-06-01
|
  1. Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol. 2003; 16: 165‒70.
  2. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med. 2011; 365: 919‒26.
  3. Sirven JI. Epilepsy: a spectrum disorder. Cold Spring Harb Perspect Med. 2015; 5: a022848.
  4. Jette N, Wiebe S. Update on the surgical treatment of epilepsy. Curr Opin Neurol. 2013; 26: 201–7
  5. Ivanovic J, Larsson PG, Østby Y, et al. Seizure outcomes of temporal lobe epilepsy surgery in patients with normal MRI and without specific histopathology. Acta Neurochir (Wien). 2017; 159: 757–66
  6. Muzhikina NV, Koroleva NYu, Kasumov VR, Pushnoj PV, Korotkov AD, Kotomin IA, Kireev MV. Klinicheskij sluchaj pacientki s fokal'noj korkovoj displaziej IIa, prilezhashhej k rechevomu centru: diagnosticheskij i lechebnyj algoritmy. Ehplepsiya i paroksizmal'nye sostoyaniya. 2022; 14 (4): 344‒54. Russian.
  7. Collaborators, G.B.D.E. Global, regional, and national burden of epilepsy, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18, 357–75.
  8. Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016; 15: 420–33.
  9. Engel J, Jr. Surgery for Seizures. N Engl J Med. 1996; 334: 647–53.
  10. Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010; 89: 310–8.
  11. Wiebe S, Blume WT, Girvin JP, Eliasziw M. Effectiveness and efficiency of surgery for temporal lobe epilepsy study group. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001; 345: 311–8.
  12. Spencer SS, Williamson PD, Bridgers SL, Mattson RH, Ciccchetti DV, Spencer DD. Reliability and accuracy of localization by scalp ictal EEG. Neurology. 1985; 35: 1567‒75.
  13. Taussig D, Montavont A, Isnard J. Invasive EEG explorations. Neurophysiol Clin. 2015; 45: 113–9.
  14. Bernasconi A, Bernasconi N, Bernhardt BC, Schrader D. Advances in MRI for “cryptogenic” epilepsies. Nat Rev Neurol. 2001; 7: 99‒108.
  15. Keller SS, Cresswell P, Denby C, Wieshmann U, Eldridge P, Baker G, et al. Persistent seizures following left temporal lobe surgery are associated with posterior and bilateral structural and functional brain abnormalities. Epilepsy Res. 2007; 74: 131– 9.
  16. Nelson L, Lapsiwala S, Haughton VM, Noyes J, Sadrzadeh AH, Moritz CH, Meyerand ME, Badie B. Preoperative mapping of the supplementary motor area in patients harboring tumors in the medial frontal lobe. J Neurosurg. 2002; 97 (5): 1108‒14.
  17. Gaillard WD, Balsamo L, Xu B, McKinney C, Papero PH, Weinstein S, et al. fMRI language task panel improves determination of language dominance. Neurology. 2004; 26; 63 (8): 1403‒8.
  18. Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL. 3rd, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003; 60 (11): 1788‒92.
  19. Norden AD, Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002; 3 (3): 219‒31.
  20. Rowe CC, Berkovic SF, Austin MC, McKay WJ, Bladin PF. Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantative analysis, Neurology. 1991; 41: 1096‒3.
  21. Meneka Kaur Sidhua B, John S, Dunkana B, Josemir Sander. Neuroimaging in epilepsy. Current opinion Neurology. 2018; 31: 000‒000.
  22. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, et al. Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med. 1987; 28 (2): 191‒202.
  23. Kapucu OL, Nobili F, Varrone A, Booij J, Vander Borght T, Någren K, Darcourt J, et al. EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging. 2009; 36 (12): 2093‒102.
  24. Rowe CC, Berkovic SF, Sia ST, Austin M, McKay WJ, Kalnins RM, et al. Localization of epileptic foci with postictal single photon emission computed tomography. Ann Neurol. 1989; 26 (5): 660‒8.
  25. Spanaki MV, Zubal IG, MacMullan J, Spencer SS. Periictal SPECT localization verified by simultaneous intracranial EEG. Epilepsia. 1999; 40 (3): 267‒74.
  26. Hogan RE, Lowe VJ, Bucholz RD. Triple-technique (MR imaging, single-photon emission CT, and CT) coregistration for image-guided surgical evaluation of patients with intractable epilepsy. AJNR Am J Neuroradiol. 1999; 20 (6): 1054‒8.
  27. Van Paesschen W, Dupont P, Sunaert S, Goffin K, Van Laere K. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol. 2007; 20 (2): 194‒202.
  28. Juni JE, Waxman AD, Devous MD Sr, Tikofsky RS, Ichise M, Van Heertum RL, et al. Society for Nuclear Medicine. Procedure guideline for brain perfusion SPECT using (99m)Tc radiopharmaceuticals 3.0. J Nucl Med Technol. 2009; 37 (3): 191‒5.
  29. Kaiboriboon K, Lowe VJ, Chantarujikapong SI, Hogan RE. The usefulness of subtraction ictal SPECT coregistered to MRI in single- and dual-headed SPECT cameras in partial epilepsy. Epilepsia. 2002; 43 (4): 408‒14.
  30. Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: A meta-analysis. Seizure. 2016; 41: 43‒50.
  31. Karpov OEh, Bronov OYu, Vaxromeeva MN, Zuev AA, Vaxrameeva AYu, Marinec AA. Protokol SISCOM v diagnostike ehpilepsii (pervye dannye). Vestnik Nacional'nogo mediko-xirurgicheskogo Centra im. N. I. Pirogova. 2018; 13 (3): 75‒78. Russian.
  32. Ahnlide JA, Rosén I, Lindén-Mickelsson Tech P, Källén K. Does SISCOM contribute to favorable seizure outcome after epilepsy surgery? Epilepsia. 2007; 48 (3): 579‒88.
  33. Desai A, Bekelis K, Thadani VM, Roberts DW, Jobst BC, Duhaime AC, et al. Interictal PET and ictal subtraction SPECT: sensitivity in the detection of seizure foci in patients with medically intractable epilepsy. Epilepsia. 2013; 54 (2): 341‒50.
  34. Perry MS, Bailey L, Freedman D, Donahue D, Malik S, Head H, et al. Coregistration of multimodal imaging is associated with favourable two-year seizure outcome after paediatric epilepsy surgery. Epileptic Disord. 2017; 19 (1): 40‒48.
  35. Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, et al. Correction to: EANM procedure guidelines for brain PET imaging using [18F]FDG, version 3. Eur J Nucl Med Mol Imaging. 2022 May; 49 (6): 2100‒1. DOI: 10.1007/s00259-022-05755-3. Erratum for: Eur J Nucl Med Mol Imaging. 2022 Jan; 49 (2): 632‒51. PMID: 35254483; PMCID: PMC9016017.
  36. Barrington SF, Koutroumanidis M, Agathonikou A, Marsden PK, Binnie CD, Polkey CE, et al. Clinical value of "ictal" FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with intractable partial epilepsies. Epilepsia. 1998; 39 (7): 753‒66.
  37. Rathore C, Dickson JC, Teotónio R, Ell P, Duncan JS. The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res. 2014; 108: 1306–14.
  38. Mendes Coelho VC, Morita ME, Amorim BJ, et al. Automated online quantification method for 18F-FDG positron emission tomography/CT improves detection of the epileptogenic zone in patients with pharmacoresistant epilepsy. Front Neurol. 2017; 8: 453.
  39. Takaya S, Hanakawa T, Hashikawa K, Ikeda A, Sawamoto N, Nagamine T, et al. Prefrontal hypofunction in patients with intractable mesial temporal lobe epilepsy. Neurology. 2006; 67 (9): 1674‒6. DOI: 10.1212/01.wnl.0000242628.26978.e2.
  40. Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, et al. The topography and significance of extratemporal hypometabolism in refractory mesial temporal lobe epilepsy examined by FDG-PET. Epilepsia. 2010; 51 (8): 1365‒73.
  41. Henry TR, Sutherling WW, Engel J Jr, et al. Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res. 1991; 10: 174–82.
  42. da Silva EA, Chugani DC, Muzik O, Chugani HT. Identification of frontal lobe epileptic foci in children using positron emission tomography. Epilepsia. 1997; 38: 1198–208.
  43. Willmann O, Wennberg R, May T, Woermann FG, Pohlmann-Eden B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy A meta-analysis. Seizure. 2007; 16 (6): 509‒20.
  44. Sadzot B, Debets RM, Maquet P, et al. Regional brain glucose metabolism in patients with complex partial seizures investigated by intracranial EEG. Epilepsy Res 1992; 12: 121–9.
  45. Chan TLH, Romsa J, Steven DA, Burneo JG. Refractory epilepsy: the role of positron emission tomography. Canadian Journal of Neurological Sciences. Journal Canadien Des Sciences Neurologiques. 2017; 45 (01): 30–34. DOI: 10.1017/cjn.2017.244.
  46. Koepp MJ, Hammers A, Labbé C, Woermann FG, Brooks DJ, Duncan JS. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology. 2000.
  47. Juhász C, Buth A, Chugani DC, Kupsky WJ, Chugani HT, Shah AK, et al. Successful surgical treatment of an inflammatory lesion associated with new-onset refractory status epilepticus, Neurosurgical Focus FOC. 2013; 34 (6): E5. Retrieved Mar 21, 2023.
  48. Niu N, Xing H, Wu M, Ma Y, Liu Y, Ba J, et al. Performance of PET imaging for the localization of epileptogenic zone in patients with epilepsy: a meta-analysis. European Radiology. 2021; 31 (8): 6353–66. DOI: 10.1007/s00330-020-07645-4.
  49. Avendaño-Estrada A, Velasco F, Velasco AL, Cuellar-Herrera M, Saucedo-Alvarado PE, Marquez-Franco R, et al. Quantitative analysis of [18F]FFMZ and [18F]FDG PET studies in the localization of seizure onset zone in drug-resistant temporal lobe epilepsy. Stereotact Funct Neurosurg. 2019; 97 (4): 232‒40.
  50. Gershen LD, Zanotti-Fregonara P, Dustin IH, Liow JS, Hirvonen J, Kreisl WC, et al. Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging of translocator protein. JAMA Neurol. 2015; 72 (8): 882‒8. DOI: 10.1001/jamaneurol.2015.0941. Erratum in: JAMA Neurol. 2015; 72 (8): 950.
  51. Günther L, Lindner S, Rominger A, Keck M, Salvamoser JD, Albert NL, et al. Identification of brain regions predicting epileptogenesis by serial [18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy. Neuroimage Clin. 2017; 15: 35‒44.
  52. Dickstein LP, Liow JS, Austermuehle A, Zoghbi S, Inati SK, Zaghloul K, et al. Neuroinflammation in neocortical epilepsy measured by PET imaging of translocator protein. Epilepsia. 2019; 60 (6): 1248‒54.
  53. Brackhan, Mirjam & Bascuñana, Pablo & Postema, Johannes & Ross, Tobias & Bengel, Frank & Bankstahl, et al. Serial quantitative TSPO-targeted PET reveals peak microglial activation up to 2 weeks after an epileptogenic brain insult. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2016; 57. DOI: 10.2967/jnumed.116.172494.
  54. Bouilleret V, Dedeurwaerdere S. What value can TSPO PET bring for epilepsy treatment? European Journal of Nuclear Medicine and Molecular Imaging. 2021.
  55. Trottier S, Evrard B, Vignal JP, Scarabin JM, Chauvel P. The serotonergic innervation of the cerebral cortex in man and its changes in focal cortical dysplasia. Epilepsy Res. 1996; 25: 79–106.
  56. Kumar A, Asano E, Chugani HT. α-[¹¹C]-methyl-L-tryptophan PET for tracer localization of epileptogenic brain regions: clinical studies. Biomark Med. 2011; 5 (5): 577‒84.
  57. Chugani HT, Luat AF, Kumar A, Govindan R, Pawlik K, Asano E. α-[11C]-Methyl-L-tryptophan--PET in 191 patients with tuberous sclerosis complex. Neurology. 2013; 81 (7): 674‒80. DOI: 10.1212/WNL.0b013e3182a08f3f. Epub 2013 Jul 12.
  58. Rubí S, Costes N, Heckemann RA, Bouvard S, Hammers A, Martí Fuster B, et al. Positron emission tomography with α-[11C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia. 2013.
  59. Merlet I, Ostrowsky K, Costes N, Ryvlin P, Isnard J, Faillenot I, et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain. 2004; 127 (Pt 4): 900‒13.
  60. Di Liberto V, van Dijk RM, Brendel M, Waldron AM, Möller C, Koska I, et al. Imaging correlates of behavioral impairments: An experimental PET study in the rat pilocarpine epilepsy model. Neurobiology of Disease. 2018; 118: 9–21.
  61. Frost JJ, Mayberg HS, Fisher RS, Douglass KH, Dannals RF, Links JM, et al. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol. 1988; 23: 231–7
  62. Madar I, Lesser RP, Krauss G, Zubieta JK, Lever JR, Kinter CM, et al. Imaging of delta- and mu-opioid receptors in temporal lobe epilepsy by positron emission tomography. Ann Neurol. 1997; 41: 358–67.
  63. Mayberg HS, Sadzot B, Meltzer CC, Fisher RS, Lesser RP, Dannals Rfet al. Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography. Ann Neurol. 1991; 30: 3–11.
  64. Hammers A, Asselin MC, Hinz R, et al. Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain. 2007; 130: 1009–16.
  65. Sone D, Galovic M, Myers J, Leonhardt G, Rabiner I, Duncan JS, et al. Contribution of the μ-opioid receptor system to affective disorders in temporal lobe epilepsy: A bidirectional relationship? Epilepsia. 2022 Nov 15.
  66. Ding YS, Chen BB, Glielmi C, Friedman K, Devinsky O. A pilot study in epilepsy patients using simultaneous PET/MR. Am J Nucl Med Mol Imaging. 2014; 4: 459–70 .
  67. Shin HW, Jewells V, Sheikh A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2015; 31: 1–4.
  68. Fernández S, Donaire A, Serès E, Setoain X, Bargalló N, Falcón C, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res. 2015; 111: 1–9.
  69. Shang K, Wang J, Fan X, Cui B, Ma J, Yang H, et al. Clinical value of hybrid TOF-PET/MR imaging-based multiparametric imaging in localizing seizure focus in patients with MRI-negative temporal lobe epilepsy. Am J Neuroradiol. 2018; 39: 1791–8.
  70. Sun K, Ren Z, Yang D, Wang X, Yu T, Ni D, et al. Voxel-based morphometric MRI post-processing and PET/MRI co-registration reveal subtle abnormalities in cingulate epilepsy. Epilepsy Res. 2021; 171: 106568.
  71. Traub-Weidinger T, Muzik O, Sundar LKS, Aull-Watschinger S, Beyer T, Hacker M, et al. Utility of absolute quantification in non-lesional extratemporal lobe epilepsy using FDG PET/MR imaging. Front Neurol. 2020; 11: 54.
  72. Kikuchi K, Togao O, Yamashita K, Momosaka D, Nakayama T, Kitamura Y, et al. Diagnostic accuracy for the epileptogenic zone detection in focal epilepsy could be higher in FDG-PET/MRI than in FDG-PET/CT. Eur Radiol. 2021; 31: 2915–22.
  73. Borbély K, Emri M, Kenessey I, Tóth M, Singer J, Barsi P, et al. PET/MRI in the presurgical evaluation of patients with epilepsy: a concordance analysis. Biomedicines. 2022; 10 (5): 949.
  74. Aslam S, Damodaran N, Rajeshkannan R, Sarma M, Gopinath S, Pillai A. Asymmetry index in anatomically symmetrized FDG-PET for improved epileptogenic focus detection in pharmacoresistant epilepsy. J Neurosurg. 2022; 138 (3): 828‒36.
  75. Meletti S, Vignoli A, Benuzzi F, Avanzini P, Ruggieri A, Pugnaghi M, et al. Ictal involvement of the nigrostriatal system in subtle seizures of ring chromosome 20 epilepsy. Epilepsia. 2012; 53: e156–e160.
  76. Chaudhary UJ, Carmichael DW, Rodionov R, Thornton RC, Bartlett P, Vulliemoz S, et al. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain J Neurol. 2012; 135: 3645–63
  77. Vaudano AE, Carmichael DW, Salek-Haddadi A, Rampp S, Stefan H, Lemieux L, et al. Networks involved in seizure initiation: A reading epilepsy case studied with EEG-fMRI and MEG. Neurology. 2012; 79: 249–53.
  78. Coan AC, Chaudhary UJ, Grouiller F, Campos BM, Perani S, De Ciantis A, et al. EEG-fMRI in the presurgical evaluation of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. 2016; 87: 642–49.