ORIGINAL RESEARCH

Computational red bone marrow dosimetry phantom of a one-year-old child enabling assessment of exposure due to incorporated beta emitters

About authors

1 Ural Research Center for Radiation Medicine, Chelyabinsk, Russia

2 Chelyabinsk State University, Chelyabinsk, Russia

Correspondence should be addressed: Pavel A. Sharagin
Vorovsky st., 68 A, Chelyabinsk, 454141, Russia; ur.mrcru@nigarahs

About paper

Funding: the work was part of the Federal Target Program "Ensuring Nuclear and Radiation Safety for 2016-2020 and up to 2035", with financial support from the Federal Medical Biological Agency of Russia.

Author contribution: Sharagin PA — data generation, analysis, interpretation, manuscript authoring and editing; Tolstykh EI — study methodology development, manuscript editing; Shishkina EA — conceptualization, manuscript editing.

Received: 2023-06-14 Accepted: 2023-08-23 Published online: 2023-09-26
|
  1. Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV. Contemporary Understanding of Radioactive Contamination of the Techa River in 1949-1956. Radiats Biol Radioecol. 2016; 56 (5): 523–34.PMID: 30703313. Russian.
  2. Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, et al. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys. 2013; 52 (1): 47–57. DOI: 10.1007/s00411-012-0438-5. Epub 2012 Nov 4.
  3. Akleev AV. Hronicheskij luchevoj sindrom u zhitelej pribrezhnyh sel reki Techa. Chelyabinsk: Kniga, 2012; 464 s. Russian.
  4. Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of radiation effects on cancer risks in the mayak worker, Techa river and atomic bomb survivor studies. Radiat Prot Dosimetry. 2017; 173 (1–3): 26–31. DOI: 10.1093/rpd/ncw316.
  5. Degteva MO, Napier BA, Tolstykh EI, et al. Enhancements in the Techa river dosimetry system: TRDS-2016D Code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019; 117 (4): 378–87. DOI: 10.1097/HP.0000000000001067.
  6. Spiers FW, Beddoe AH, Whitwell JR. Mean skeletal dose factors for beta-particle emitters in human bone. Part I: volume-seeking radionuclides. The British journal of radiology. 1978; 51 (608): 622–7.
  7. Silkin SS, Krestinina LYu, Starcev NV, Akleev AV. Ural'skaya kogorta avarijno-obluchennogo naseleniya. Medicina ehkstremal'nyh situacij. 2019; 21 (3): 393–402. Russian.
  8. O'Reilly SE, DeWeese LS, Maynard MR, Rajon DA, Wayson MB, Marshall EL, et al. An 13 image-based skeletal dosimetry model for the ICRP reference adult female-internal electron 14 sources. Phys Med Biol. 2016 Dec 21; 61 (24): 8794–824. Epub 2016 Nov 29.
  9. Xu XG, Chao TC, Bozkurt A. VIP-Man: an image-based wholebody adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys. 2000; 78 (5): 476–86. DOI: 10.1097/00004032200005000-00003. PMID: 10772019.
  10. Shah AP, Bolch WE, Rajon DA, Patton PW, Jokisch DW. A pairedimage radiation transport model for skeletal dosimetry. J Nucl Med. 2005; 46 (2): 344–53. PMID: 15695796.
  11. Pafundi D. Image-based skeletal tissues and electron dosimetry models for the ICRP reference pediatric age series. A dissertation presented to the graduate schools of the University of Florida in partial fulfillment of the requirements for the degree of doctor of the philosophy. University of Florida. 2009.
  12. Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Phys Med Biol. 2011; 56 (8): 2309–46. DOI: 10.1088/0031-9155/56/8/001.
  13. Degteva MO, Tolstykh EI, Shishkina EA, Sharagin PA, Zalyapin VI, Volchkova AYu, et al. PLoS One. 2021; 16 (10): e0257605. DOI: 10.1371/journal.pone.0257605. PMID: 34648511; PMCID: PMC8516275.PlosOne.
  14. Dyogteva MO, Shishkina EA, Tolstykh EI, Zalyapin VI, Sharagin PA, Smit MA, i dr. Metodologicheskij podhod k razrabotke dozimetricheskih modelej skeleta cheloveka dlya betaizluchayushhih radionuklidov. Radiacionnaya gigiena. 2019; 12 (2). DOI: 10.21514/1998-426X-2019-12-2-66-75. Russian.
  15. Volchkova AYu, Sharagin PA, Shishkina EA. Internal bone marrow dosimetry: the effect of the exposure due to 90Sr incorporated in the adjacent bone segments. Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software. 2022; 15 (4): 44–58. DOI: 10.14529/mmp220404.
  16. Sharagin PA, Shishkina EA, Tolstykh EI. Vychislitel'nyj fantom dlya dozimetrii krasnogo kostnogo mozga novorozhdennogo rebenka ot inkorporirovannyh beta-izluchatelej. Medicina ehkstremal'nyh situacij. 2022; (4): 74–82. DOI: 10.47183/mes.2022.045. Russian.
  17. Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol. 1981; 26 (3): 389–400.
  18. Sharagin PA, Shishkina EA, Tolstykh EI, Volchkova AYu, Smith MA, Degteva MO. Segmentation of hematopoietic sites of human skeleton for calculations of dose to active marrow exposed to bone-seeking radionuclides. RAD Conference Proceedings. 2018; (3): 154–8. DOI: 10.21175/RadProc.2018.33.
  19. Sharagin PA, Tolstykh EI, Shishkina EA, Degteva MO. Dozimetricheskoe modelirovanie kosti dlya osteotropnyh betaizluchayushhih radionuklidov: razmernye parametry i segmentaciya. V sbornike: Materialy mezhdunarodnoj nauchnoj konferencii “Sovremennye problemy radiobiologii”. Belarus', Gomel', 23-24 sentyabrya 2021; s. 200–204. Russian.
  20. Tolstykh EI, Sharagin PA, Shishkina EA, Degteva MO. Formirovanie doz oblucheniya krasnogo kostnogo mozga cheloveka ot 89,90Sr, ocenka parametrov trabekulyarnoj kosti dlya dozimetricheskogo modelirovaniya. V sbornike: Materialy mezhdunarodnoj nauchnoj konferencii “Sovremennye problemy radiobiologii”. Belarus', Gomel', 23–24 sentyabrya 2021; s. 176–179. Russian.
  21. Tolstykh EI, Sharagin PA, Shishkina EA, Volchkova AYu, Degteva MO. Anatomo-morfologicheskij bazis dlya dozimetricheskogo modelirovaniya trabekulyarnoj kosti cheloveka s ispol'zovaniem stoxasticheskogo parametricheskogo podhoda. Klinicheskij vestnik GNC FMBC im. A. I. Burnazyana. 2022; 3: 25–40. Russian.
  22. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Annals of the ICRP. Annals of the ICRP. 2002; 32 (3–4): 1–277.
  23. Shishkina EA, Timofeev YS, Volchkova AY, Sharagin PA, Zalyapin VI, Degteva MO, et al. Trabecula: a random generator of computational phantoms for bone marrow dosimetry. Health Phys. 2020; 118 (1): 53–59. DOI: 10.1097/HP.0000000000001127.
  24. Zalyapin VI, Timofeev YuS, Shishkina EA. A parametric stochastic model of bone geometry. Bulletin of Southern Urals State University, Issue «Mathematical Modelling. Programming & Computer Software» (SUSU MMCS) 2018; 11 (2): 44–57. DOI: 10.14529/mmp180204.
  25. Robinson RA. Chemical analysis and electron microscopy of bone. In: Rodahl K, Nicholson JT, Brown EM editors. Bone as a tissue. New York: McGraw-Hill, 1960; p. 186–250.
  26. Vogler JB 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988; 168 (3): 679–93.
  27. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiology. 1998; 27: 471–83.
  28. Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol. 1998; 8 (8): 1327–34.
  29. Taccone A, Oddone M, Dell'Acqua AD, Occhi M, Ciccone MA. MRI "road–map" of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatr Radiol. 1995; 25 (8): 596–606; PubMed PMID: 8570312.
  30. Taccone A, Oddone M, Occhi M, Dell'Acqua AD, Ciccone MA. MRI "road–map" of normal age-related bone marrow. I. Cranial bone and spine. Pediatr Radiol. 1995; 25 (8): 588–95; PubMed PMID: 8570311.
  31. Cunningham C, Scheuer L, Black S. Developmental juvenile osteology. Elsevier Academic Press, 2016.
  32. Ryan TM, Krovitz GE. Trabecular bone ontogeny in the human proximal femur. J Hum Evol. 2006; 51 (6): 591–602.
  33. Milovanovic P, Djonic D, Hahn M, Amling M, Busse B, Djuric M. Region-dependent patterns of trabecular bone growth in the human proximal femur: A study of 3D bone microarchitecture from early postnatal to late childhood period. Am J Phys Anthropol. 2017; 164 (2): 281–91. DOI: 10.1002/ajpa.23268. Epub 2017 Jun 20.
  34. Saers JP, Cazorla-Bak Y, Shaw CN, Stock JT, Ryan TM. Trabecular bone structural variation throughout the human lower limb. J Hum Evol. 2016; 97: 97–108. DOI: 10.1016/j.jhevol.2016.05.012.
  35. Ryan TM, Raichlen DA, Gosman JH. Structural and mechanical changes in trabecular bone during early development in the human femur and humerus. In: Building bones: bone formation and development in anthropology. Cambridge University Press, 2017; p. 281–302. Available from: https://doi. org/10.1017/9781316388907.013.
  36. Byers S, Moore AJ, Byard RW, Fazzalari NL. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone. 2000; 27 (4): 495–501.
  37. Gosman JH, Ketcham RA. Patterns in ontogeny of human trabecular bone from SunWatch Village in the Prehistoric Ohio Valley: general features of microarchitectural change. Am J Phys Anthropol. 2009; 138 (3): 318–32. DOI: 10.1002/ajpa.20931. PubMed PMID: 18785633.
  38. Volpato V. Bone endostructure morphogenesis of the human ilium. Comptes rendus Palévol. 2008; 7: 463–71. DOI: 10.1016/j. crpv.2008.06.001.
  39. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, et al. Normative data for iliac bone histomorphometry in growing children. Bone. 2000; 26 (2): 103–9.
  40. Rodriguez-Florez N, Ibrahim A, Hutchinson JC, Borghi A, James G, Arthurs OJ, et al. Cranial bone structure in children with sagittal craniosynostosis: relationship with surgical outcomes. J Plast Reconstr Aesthet Surg. 2017; 70 (11): 1589–97. DOI: 10.1016/j. bjps.2017.06.017.
  41. Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources. Phys Med Biol. 2011; 56 (8): 2309–46.
  42. Acquaah F, Robson Brown KA, Ahmed F, Jeffery N, Abel RL. Early trabecular development in human vertebrae: overproduction, constructive regression, and refinement. Front Endocrinol (Lausanne). 2015; 6: 67. DOI: 10.3389/fendo.2015.00067. eCollection 2015.
  43. Florence JL. Linear and cortical bone dimensions as indicators of health status in subadults from the Milwaukee County Poor Farm Cemetery. M.A., University of Colorado at Denver, 2007.
  44. Miles AEW. Growth cuves of immature bones from a scottish island population of sixteenth to mid-nineteenth century: limb-bone diaphyses and some bones of the hand and foot. International Journal of Osteoarcheology. 1994; 4: 121–36.
  45. Maresh MM. Measurements from roentgenograms. In: McCammon RW, editor. Human Growth and Development. Springfield, IL: Charles C. Thomas, 1970; p. 157–200.
  46. Dhavale N, Halcrow SE, Buckley HR, Tayles N, Domett KM, Gray AR. Linear and appositional growth in infants and children from the prehistoric settlement of Ban Non Wat, Northeast Thailand: evaluating biological responses to agricultural intensification in Southeast Asia. Journal of Archaeological Science: Reports. 2017; 11: 435–46.
  47. Svadovsky VS. Age-related bone remodeling. Moscow, 1961.
  48. Danforth ME, Wrobel GD, Armstrong CW, Swanson D. Juvenile age estimation using diaphyseal long bone lengths among ancient Maya populations. Latin American Antiquity. 2017; 20 (1): 3–13.
  49. Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat. 2019. DOI: 10.1111/joa.13116
  50. Pfeiffer S. Cortical Bone Histology in Juveniles. Available from: https://www.researchgate.net/publication/303179375_Cortical_ bone_histology_in_Juveniles
  51. Hresko AM, Hinchcliff EM, Deckey DG, Hresko MT. Developmental sacral morphology: MR study from infancy to skeletal maturity. Eur Spine J. 2020. Available from: https://doi.org/10.1007/s00586020-06350-6.
  52. Kuznecov LE. Perelomy taza u detej: morfologiya, biomexanika, diagnostika. M.: Folium, 1994. Russian.
  53. Mavrych V, Bolgova O, Ganguly P, Kashchenko S. Age-related сhanges of lumbar vertebral body morphometry. Austin J Anat. 2014; 1 (3): 7.
  54. Dimeglio A, Bonnel F, Canavese F. The Growing Spine. In: Jean Marc Vital, Derek Thomas Cawley, editors. Spinal Anatomy. Modern Concepts. Springer, 2020; p. 25–52.
  55. Andronevsky А. Anatomy rebenka. Buharest: Meridian, 1970.
  56. Bernert Zs, Évinger S, Hajdu T. New data on the biological age estimation of children using bone measurements based on historical populations from the Carpathian Basin. Annales Historico-Naturales Musei Nationalis Hungarici. 2007; 99: 199–206.
  57. Gindhart PS. Growth standards for the tibia and radius in children aged one month through eighteen years. Am J Phys Anthrop. 1973; 39: 41–48.
  58. Lopez-Costas O, Rissech C, Trancho G, Turbón D. Postnatal ontogenesis of the tibia. Implications for age and sex estimation. Forensic Sci Int. 2012; 214 (1–3): 207.e1–11. DOI: 10.1016/j. forsciint.2011.07.038. Epub 2011 Aug 20. PubMed PMID: 21862250.
  59. Blake KAS. An investigation of sex determination from the subadult pelvis: a morphometric analysis. Doctoral Dissertation, University of Pittsburgh. 2011.
  60. Cunningham CA, Black SM. Iliac cortical thickness in the neonate - the gradient effect. J Anat. 2009; 215 (3): 364–70. DOI: 10.1111/j.1469-7580.2009.01112.x.
  61. Cunningham CA, Black SM. Anticipating bipedalism: trabecular organization in the newborn ilium. J Anat. 2009; 214 (6): 817–29. DOI: 10.1111/j.1469-7580.2009.01073.x
  62. Corron L, Marchal F, Condemi S, Chaumoître K, Adalian P. A New Approach of Juvenile Age Estimation using Measurements of the Ilium and Multivariate Adaptive Regression Splines (MARS) Models for Better Age Prediction. Forensic Sci. 2017; 62 (1): 18–29. DOI: 10.1111/1556-4029.13224.
  63. Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone. 2000; 27 (4): 487–94. PMID: 11033443.
  64. Schnitzler CM, Mesquita JM, Pettifor JM. Cortical bone development in black and white South African children: iliac crest histomorphometry. Bone. 2009; 44 (4): 603–11. DOI: 10.1016/j. bone.2008.12.009.
  65. De Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe VV. Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med. 2016; 130 (5): 1371–7. DOI: 10.1007/s00414-016-1324-5.
  66. Margulies S, Coats B. Experimental injury biomechanics of the pediatric head and brain. Chapter 4. In: Crandall JR, Myers BS, Meaney DF, Schmidtke SZ, editors. Pediatric Injury Biomechanics Springer Science + Business Media New York. 2013; p. 157–190.
  67. Li Z, Park BK, Liu W, Zhang J, Reed MP, Rupp JD, et al. A statistical skull geometry model for children 0–3 years old. PLoS One. 2015 May 18; 10 (5): e0127322. DOI: 10.1371/journal.pone.0127322. eCollection 2015.
  68. Rodriguez-Florez N, Ibrahim A, Hutchinson JC, Borghi A, James G, Arthurs OJ, et al. Cranial bone structure in children with sagittal craniosynostosis: Relationship with surgical outcomes. J Plast Reconstr Aesthet Surg. 2017; 70 (11): 1589–97. DOI: 10.1016/j. bjps.2017.06.017.
  69. McGraw MA, Mehlman CT, Lindsell CJ, Kirby CL. Postnatal growth of the clavicle: birth to eighteen years of age. Journal of Pediatric Orthopedics. 2009; 29: 937.
  70. Bleuze MM, Wheeler SM, Williams LJ, Dupras TL. Growth of the pectoral girdle in a sample of juveniles from the kellis 2 cemetery, Dakhleh Oasis, Egypt. Am J Hum Biol. 2016; 28 (5): 636–45.
  71. Black SM, Scheuer JL. Age changes in the clavicle: from the early neonatal period to skeletal maturity. International Journal of Osteoarchaeology. 1996; 6: 425–34.
  72. Bernat A, Huysmans T, Van Glabbeek F, Sijbers J, Gielen J, Van Tongel A. The anatomy of the clavicle: a three-dimensional cadaveric study. Clin Anat. 2014; 27 (5): 712–23.
  73. Vallois HV. L’omoplate humaine. Bulletin de la Sociétié d’Anthropolgie de Paris. 1946; 7: 16–99.
  74. Saunders S, Hoppa R, Southern R. Diaphyseal growth in a nineteenth-century skeletal sample of subadults from St Thomas’ Church, Belleville, Ontario. International Journal of Osteoarchaeology. 1993; 3: 265–81.
  75. Rissech C, Black S. Scapular development from neonatal period to skeletal maturity. A preliminary study. Int J Osteoarchaeol. 2007; 17: 451–64.
  76. Cardoso HFV, Spake L, Humphrey LT. Age estimation of immature human skeletal remains from the dimensions of the girdle bones in the postnatal period. Am J Phys Anthropol. 2017; 163 (4): 772–83. DOI: 10.1002/ajpa.23248. Epub 2017 May 24. PubMed PMID: 28542741.
  77. Badr El Dine F, Hassan H. Ontogenetic study of the scapula among some Egyptians: Forensic implications in age and sex estimation using Multidetector Computed Tomography, Egyptian Journal of Forensic Sciences. 2015; 6 (2): 56–77.
  78. Kneissel M, Roschger P, Steiner W, Schamall D, Kalchhauser G, Boyde A, et al. Cancellous Bone Structure in the Growing and Aging Lumbar Spine in a Historic Nubian Population. Calcif Tissue Int. 1997; 61: 95–100.
  79. Johnson KT, Al-Holou WN, Anderson RC, Wilson TJ, Karnati T, Ibrahim M, et al. Morphometric analysis of the developing pediatric cervical spine. J Neurosurg Pediatr. 2016; 18 (3): 377–89. DOI: 10.3171/2016.3. PEDS1612. Epub 2016 May 27. PubMed PMID: 27231821.
  80. Comeau A. Age-related changes in geometric characteristics of the pediatric thoracic cage and comparison of thorax shape with a pediatric CPR Manikin. PhD thesis. 2010.