ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ
Вычислительный фантом для дозиметрии красного костного мозга годовалого ребенка от инкорпорированных бета-излучателей
1 Уральский научно-практический центр радиационной медицины Федерального медико-биологического агентства, Челябинск, Россия
2 Челябинский государственный университет, Челябинск, Россия
Для корреспонденции: Павел Алексеевич Шарагин
ул. Воровского, д. 68-а, г. Челябинск, 454141, Россия; ur.mrcru@nigarahs
Финансирование: работа выполнена в рамках реализации федеральной целевой программы «Федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2016–2020 годы и на период до 2035 года» и при финансовой поддержке Федерального медико-биологического агентства России.
Вклад авторов: П. А. Шарагин — получение, анализ и интерпретацию данных, написание и редактирование статьи; Е. И. Толстых — разработка методики исследования, редактирование статьи; Е. А. Шишкина — разработка концепции, редактирование статьи.
- Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV. Contemporary Understanding of Radioactive Contamination of the Techa River in 1949-1956. Radiats Biol Radioecol. 2016; 56 (5): 523–34.PMID: 30703313. Russian.
- Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, et al. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. Radiat Environ Biophys. 2013; 52 (1): 47–57. DOI: 10.1007/s00411-012-0438-5. Epub 2012 Nov 4.
- Аклеев А. В. Хронический лучевой синдром у жителей прибрежных сел реки Теча. Челябинск: Книга, 2012; 464 с.
- Preston DL, Sokolnikov ME, Krestinina LY, Stram DO. Estimates of radiation effects on cancer risks in the mayak worker, Techa river and atomic bomb survivor studies. Radiat Prot Dosimetry. 2017; 173 (1–3): 26–31. DOI: 10.1093/rpd/ncw316.
- Degteva MO, Napier BA, Tolstykh EI, et al. Enhancements in the Techa river dosimetry system: TRDS-2016D Code for reconstruction of deterministic estimates of dose from environmental exposures. Health Phys. 2019; 117 (4): 378–87. DOI: 10.1097/HP.0000000000001067.
- Spiers FW, Beddoe AH, Whitwell JR. Mean skeletal dose factors for beta-particle emitters in human bone. Part I: volume-seeking radionuclides. The British journal of radiology. 1978; 51 (608): 622–7.
- Силкин С. С., Крестинина Л. Ю., Старцев Н. В, Аклеев А. В. Уральская когорта аварийно-облученного населения. Медицина экстремальных ситуаций. 2019; 21 (3): 393–402.
- O'Reilly SE, DeWeese LS, Maynard MR, Rajon DA, Wayson MB, Marshall EL, et al. An 13 image-based skeletal dosimetry model for the ICRP reference adult female-internal electron 14 sources. Phys Med Biol. 2016 Dec 21; 61 (24): 8794–824. Epub 2016 Nov 29.
- Xu XG, Chao TC, Bozkurt A. VIP-Man: an image-based wholebody adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys. 2000; 78 (5): 476–86. DOI: 10.1097/00004032200005000-00003. PMID: 10772019.
- Shah AP, Bolch WE, Rajon DA, Patton PW, Jokisch DW. A pairedimage radiation transport model for skeletal dosimetry. J Nucl Med. 2005; 46 (2): 344–53. PMID: 15695796.
- Pafundi D. Image-based skeletal tissues and electron dosimetry models for the ICRP reference pediatric age series. A dissertation presented to the graduate schools of the University of Florida in partial fulfillment of the requirements for the degree of doctor of the philosophy. University of Florida. 2009.
- Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male–internal electron sources. Phys Med Biol. 2011; 56 (8): 2309–46. DOI: 10.1088/0031-9155/56/8/001.
- Degteva MO, Tolstykh EI, Shishkina EA, Sharagin PA, Zalyapin VI, Volchkova AYu, et al. PLoS One. 2021; 16 (10): e0257605. DOI: 10.1371/journal.pone.0257605. PMID: 34648511; PMCID: PMC8516275.PlosOne.
- Дёгтева М. О., Шишкина Е. А., Толстых Е. И., Заляпин В. И., Шарагин П. А., Смит М. А., и др. Методологический подход к разработке дозиметрических моделей скелета человека для бета-излучающих радионуклидов. Радиационная гигиена. 2019; 12 (2). DOI: 10.21514/1998-426X-2019-12-2-66-75.
- Volchkova AYu, Sharagin PA, Shishkina EA. Internal bone marrow dosimetry: the effect of the exposure due to 90Sr incorporated in the adjacent bone segments. Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software. 2022; 15 (4): 44–58. DOI: 10.14529/mmp220404.
- Шарагин П. А., Шишкина Е. А., Толстых Е. И. Вычислительный фантом для дозиметрии красного костного мозга новорожденного ребенка от инкорпорированных бетаизлучателей. Медицина экстремальных ситуаций. 2022; (4): 74–82. DOI: 10.47183/mes.2022.045.
- Cristy M. Active bone marrow distribution as a function of age in humans. Phys Med Biol. 1981; 26 (3): 389–400.
- Sharagin PA, Shishkina EA, Tolstykh EI, Volchkova AYu, Smith MA, Degteva MO. Segmentation of hematopoietic sites of human skeleton for calculations of dose to active marrow exposed to bone-seeking radionuclides. RAD Conference Proceedings. 2018; (3): 154–8. DOI: 10.21175/RadProc.2018.33.
- Шарагин П. А., Толстых Е. И., Шишкина Е. А., Дегтева М. О. Дозиметрическое моделирование кости для остеотропных бета-излучающих радионуклидов: размерные параметры и сегментация. В сборнике: Материалы международной научной конференции “Современные проблемы радиобиологии”. Беларусь, Гомель, 23-24 сентября 2021; с. 200–204.
- Толстых Е. И., Шарагин П. А., Шишкина Е. А., Дегтева М. О. Формирование доз облучения красного костного мозга человека от 89,90Sr, оценка параметров трабекулярной кости для дозиметрического моделирования. В сборнике: Материалы международной научной конференции “Современные проблемы радиобиологии”. Беларусь, Гомель, 23–24 сентября 2021; с. 176–179.
- Толстых Е. И., Шарагин П. А., Шишкина Е. А., Волчкова А. Ю. Дегтева М. О. Анатомо-морфологический базис для дозиметрического моделирования трабекулярной кости человека с использованием стохастического параметрического подхода. Клинический вестник ГНЦ ФМБЦ им. А. И. Бурназяна. 2022; 3: 25–40.
- Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values. Annals of the ICRP. Annals of the ICRP. 2002; 32 (3–4): 1–277.
- Shishkina EA, Timofeev YS, Volchkova AY, Sharagin PA, Zalyapin VI, Degteva MO, et al. Trabecula: a random generator of computational phantoms for bone marrow dosimetry. Health Phys. 2020; 118 (1): 53–59. DOI: 10.1097/HP.0000000000001127.
- Zalyapin VI, Timofeev YuS, Shishkina EA. A parametric stochastic model of bone geometry. Bulletin of Southern Urals State University, Issue «Mathematical Modelling. Programming & Computer Software» (SUSU MMCS) 2018; 11 (2): 44–57. DOI: 10.14529/mmp180204.
- Robinson RA. Chemical analysis and electron microscopy of bone. In: Rodahl K, Nicholson JT, Brown EM editors. Bone as a tissue. New York: McGraw-Hill, 1960; p. 186–250.
- Vogler JB 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988; 168 (3): 679–93.
- Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of the normal bone marrow. Skeletal Radiology. 1998; 27: 471–83.
- Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol. 1998; 8 (8): 1327–34.
- Taccone A, Oddone M, Dell'Acqua AD, Occhi M, Ciccone MA. MRI "road–map" of normal age-related bone marrow. II. Thorax, pelvis and extremities. Pediatr Radiol. 1995; 25 (8): 596–606; PubMed PMID: 8570312.
- Taccone A, Oddone M, Occhi M, Dell'Acqua AD, Ciccone MA. MRI "road–map" of normal age-related bone marrow. I. Cranial bone and spine. Pediatr Radiol. 1995; 25 (8): 588–95; PubMed PMID: 8570311.
- Cunningham C, Scheuer L, Black S. Developmental juvenile osteology. Elsevier Academic Press, 2016.
- Ryan TM, Krovitz GE. Trabecular bone ontogeny in the human proximal femur. J Hum Evol. 2006; 51 (6): 591–602.
- Milovanovic P, Djonic D, Hahn M, Amling M, Busse B, Djuric M. Region-dependent patterns of trabecular bone growth in the human proximal femur: A study of 3D bone microarchitecture from early postnatal to late childhood period. Am J Phys Anthropol. 2017; 164 (2): 281–91. DOI: 10.1002/ajpa.23268. Epub 2017 Jun 20.
- Saers JP, Cazorla-Bak Y, Shaw CN, Stock JT, Ryan TM. Trabecular bone structural variation throughout the human lower limb. J Hum Evol. 2016; 97: 97–108. DOI: 10.1016/j.jhevol.2016.05.012.
- Ryan TM, Raichlen DA, Gosman JH. Structural and mechanical changes in trabecular bone during early development in the human femur and humerus. In: Building bones: bone formation and development in anthropology. Cambridge University Press, 2017; p. 281–302. Available from: https://doi. org/10.1017/9781316388907.013.
- Byers S, Moore AJ, Byard RW, Fazzalari NL. Quantitative histomorphometric analysis of the human growth plate from birth to adolescence. Bone. 2000; 27 (4): 495–501.
- Gosman JH, Ketcham RA. Patterns in ontogeny of human trabecular bone from SunWatch Village in the Prehistoric Ohio Valley: general features of microarchitectural change. Am J Phys Anthropol. 2009; 138 (3): 318–32. DOI: 10.1002/ajpa.20931. PubMed PMID: 18785633.
- Volpato V. Bone endostructure morphogenesis of the human ilium. Comptes rendus Palévol. 2008; 7: 463–71. DOI: 10.1016/j. crpv.2008.06.001.
- Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, et al. Normative data for iliac bone histomorphometry in growing children. Bone. 2000; 26 (2): 103–9.
- Rodriguez-Florez N, Ibrahim A, Hutchinson JC, Borghi A, James G, Arthurs OJ, et al. Cranial bone structure in children with sagittal craniosynostosis: relationship with surgical outcomes. J Plast Reconstr Aesthet Surg. 2017; 70 (11): 1589–97. DOI: 10.1016/j. bjps.2017.06.017.
- Hough M, Johnson P, Rajon D, Jokisch D, Lee C, Bolch W. An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources. Phys Med Biol. 2011; 56 (8): 2309–46.
- Acquaah F, Robson Brown KA, Ahmed F, Jeffery N, Abel RL. Early trabecular development in human vertebrae: overproduction, constructive regression, and refinement. Front Endocrinol (Lausanne). 2015; 6: 67. DOI: 10.3389/fendo.2015.00067. eCollection 2015.
- Florence JL. Linear and cortical bone dimensions as indicators of health status in subadults from the Milwaukee County Poor Farm Cemetery. M.A., University of Colorado at Denver, 2007.
- Miles AEW. Growth cuves of immature bones from a scottish island population of sixteenth to mid-nineteenth century: limb-bone diaphyses and some bones of the hand and foot. International Journal of Osteoarcheology. 1994; 4: 121–36.
- Maresh MM. Measurements from roentgenograms. In: McCammon RW, editor. Human Growth and Development. Springfield, IL: Charles C. Thomas, 1970; p. 157–200.
- Dhavale N, Halcrow SE, Buckley HR, Tayles N, Domett KM, Gray AR. Linear and appositional growth in infants and children from the prehistoric settlement of Ban Non Wat, Northeast Thailand: evaluating biological responses to agricultural intensification in Southeast Asia. Journal of Archaeological Science: Reports. 2017; 11: 435–46.
- Svadovsky VS. Age-related bone remodeling. Moscow, 1961.
- Danforth ME, Wrobel GD, Armstrong CW, Swanson D. Juvenile age estimation using diaphyseal long bone lengths among ancient Maya populations. Latin American Antiquity. 2017; 20 (1): 3–13.
- Beresheim AC, Pfeiffer S, Grynpas M. Ontogenetic changes to bone microstructure in an archaeologically derived sample of human ribs. J Anat. 2019. DOI: 10.1111/joa.13116
- Pfeiffer S. Cortical Bone Histology in Juveniles. Available from: https://www.researchgate.net/publication/303179375_Cortical_ bone_histology_in_Juveniles
- Hresko AM, Hinchcliff EM, Deckey DG, Hresko MT. Developmental sacral morphology: MR study from infancy to skeletal maturity. Eur Spine J. 2020. Available from: https://doi.org/10.1007/s00586020-06350-6.
- Kузнецов Л. Е. Переломы таза у детей: морфология, биомеханика, диагностика. М.: Фолиум, 1994.
- Mavrych V, Bolgova O, Ganguly P, Kashchenko S. Age-related сhanges of lumbar vertebral body morphometry. Austin J Anat. 2014; 1 (3): 7.
- Dimeglio A, Bonnel F, Canavese F. The Growing Spine. In: Jean Marc Vital, Derek Thomas Cawley, editors. Spinal Anatomy. Modern Concepts. Springer, 2020; p. 25–52.
- Андроневский А. Анатомия ребенка. Бухарест: Меридиан, 1970.
- Bernert Zs, Évinger S, Hajdu T. New data on the biological age estimation of children using bone measurements based on historical populations from the Carpathian Basin. Annales Historico-Naturales Musei Nationalis Hungarici. 2007; 99: 199– 206.
- Gindhart PS. Growth standards for the tibia and radius in children aged one month through eighteen years. Am J Phys Anthrop. 1973; 39: 41–48.
- Lopez-Costas O, Rissech C, Trancho G, Turbón D. Postnatal ontogenesis of the tibia. Implications for age and sex estimation. Forensic Sci Int. 2012; 214 (1–3): 207.e1–11. DOI: 10.1016/j. forsciint.2011.07.038. Epub 2011 Aug 20. PubMed PMID: 21862250.
- Blake KAS. An investigation of sex determination from the subadult pelvis: a morphometric analysis. Doctoral Dissertation, University of Pittsburgh. 2011.
- Cunningham CA, Black SM. Iliac cortical thickness in the neonate - the gradient effect. J Anat. 2009; 215 (3): 364–70. DOI: 10.1111/j.1469-7580.2009.01112.x.
- Cunningham CA, Black SM. Anticipating bipedalism: trabecular organization in the newborn ilium. J Anat. 2009; 214 (6): 817–29. DOI: 10.1111/j.1469-7580.2009.01073.x
- Corron L, Marchal F, Condemi S, Chaumoître K, Adalian P. A New Approach of Juvenile Age Estimation using Measurements of the Ilium and Multivariate Adaptive Regression Splines (MARS) Models for Better Age Prediction. Forensic Sci. 2017; 62 (1): 18–29. DOI: 10.1111/1556-4029.13224.
- Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone. 2000; 27 (4): 487–94. PMID: 11033443.
- Schnitzler CM, Mesquita JM, Pettifor JM. Cortical bone development in black and white South African children: iliac crest histomorphometry. Bone. 2009; 44 (4): 603–11. DOI: 10.1016/j. bone.2008.12.009.
- De Boer HH, Van der Merwe AE, Soerdjbalie-Maikoe VV. Human cranial vault thickness in a contemporary sample of 1097 autopsy cases: relation to body weight, stature, age, sex and ancestry. Int J Legal Med. 2016; 130 (5): 1371–7. DOI: 10.1007/s00414-0161324-5.
- Margulies S, Coats B. Experimental injury biomechanics of the pediatric head and brain. Chapter 4. In: Crandall JR, Myers BS, Meaney DF, Schmidtke SZ, editors. Pediatric Injury Biomechanics Springer Science + Business Media New York. 2013; p. 157–190.
- Li Z, Park BK, Liu W, Zhang J, Reed MP, Rupp JD, et al. A statistical skull geometry model for children 0–3 years old. PLoS One. 2015 May 18; 10 (5): e0127322. DOI: 10.1371/journal.pone.0127322. eCollection 2015.
- Rodriguez-Florez N, Ibrahim A, Hutchinson JC, Borghi A, James G, Arthurs OJ, et al. Cranial bone structure in children with sagittal craniosynostosis: Relationship with surgical outcomes. J Plast Reconstr Aesthet Surg. 2017; 70 (11): 1589–97. DOI: 10.1016/j. bjps.2017.06.017.
- McGraw MA, Mehlman CT, Lindsell CJ, Kirby CL. Postnatal growth of the clavicle: birth to eighteen years of age. Journal of Pediatric Orthopedics. 2009; 29: 937.
- Bleuze MM, Wheeler SM, Williams LJ, Dupras TL. Growth of the pectoral girdle in a sample of juveniles from the kellis 2 cemetery, Dakhleh Oasis, Egypt. Am J Hum Biol. 2016; 28 (5): 636–45.
- Black SM, Scheuer JL. Age changes in the clavicle: from the early neonatal period to skeletal maturity. International Journal of Osteoarchaeology. 1996; 6: 425–34.
- Bernat A, Huysmans T, Van Glabbeek F, Sijbers J, Gielen J, Van Tongel A. The anatomy of the clavicle: a three-dimensional cadaveric study. Clin Anat. 2014; 27 (5): 712–23.
- Vallois HV. L’omoplate humaine. Bulletin de la Sociétié d’Anthropolgie de Paris. 1946; 7: 16–99.
- Saunders S, Hoppa R, Southern R. Diaphyseal growth in a nineteenth-century skeletal sample of subadults from St Thomas’ Church, Belleville, Ontario. International Journal of Osteoarchaeology. 1993; 3: 265–81.
- Rissech C, Black S. Scapular development from neonatal period to skeletal maturity. A preliminary study. Int J Osteoarchaeol. 2007; 17: 451–64.
- Cardoso HFV, Spake L, Humphrey LT. Age estimation of immature human skeletal remains from the dimensions of the girdle bones in the postnatal period. Am J Phys Anthropol. 2017; 163 (4): 772–83. DOI: 10.1002/ajpa.23248. Epub 2017 May 24. PubMed PMID: 28542741.
- Badr El Dine F, Hassan H. Ontogenetic study of the scapula among some Egyptians: Forensic implications in age and sex estimation using Multidetector Computed Tomography, Egyptian Journal of Forensic Sciences. 2015; 6 (2): 56–77.
- Kneissel M, Roschger P, Steiner W, Schamall D, Kalchhauser G, Boyde A, et al. Cancellous Bone Structure in the Growing and Aging Lumbar Spine in a Historic Nubian Population. Calcif Tissue Int. 1997; 61: 95–100.
- Johnson KT, Al-Holou WN, Anderson RC, Wilson TJ, Karnati T, Ibrahim M, et al. Morphometric analysis of the developing pediatric cervical spine. J Neurosurg Pediatr. 2016; 18 (3): 377–89. DOI: 10.3171/2016.3. PEDS1612. Epub 2016 May 27. PubMed PMID: 27231821.
- Comeau A. Age-related changes in geometric characteristics of the pediatric thoracic cage and comparison of thorax shape with a pediatric CPR Manikin. PhD thesis. 2010.