ORIGINAL RESEARCH

The effect of chronic exposure on the FOXP3 concentration in lysates of the mitogen-stimulated mononuclear cells

Kodintseva EA1,2, Akleyev AA3
About authors

1 Ural Research Center for Radiation Medicine, Chelyabinsk, Russia

2 Chelyabinsk State University, Chelyabinsk, Russia

3 South-Ural State Medical University, Chelyabinsk, Russia

Correspondence should be addressed: Ekaterina A. Kodintseva
Vorovskogo, 68A, Chelyabinsk, 454141, Russia; ur.liam@tac.avorahcvo

About paper

Funding: this study was carried out in the framework of state assignment of the FMBA of Russia, subject "State of human cellular immunity during realization of long-term effects of chronic radiation exposure."

Acknowledgments: authors thank Startsev NV, Head of the "Human Being" Database Department of the Urals Research Center for Radiation Medicine of the FMBA of Russia, for the data provided; Litvinenko NP, senior laboratory assistant at the Laboratory of Molecular Cellular Radiobiology of the Urals Research Center for Radiation Medicine of the FMBA of Russia, for assistance in conducting the experiment.

Author contribution: Kodintseva EA — study concept and design, experimental work, analysis and statistical processing of the data, article authoring; Akleev AA — study concept, interpretation of the results, article editing.

Compliance with ethical standards: the study was approved by the Ethics Committee of the Urals Research Center for Radiation Medicine of the FMBA of Russia (Minutes #3 of June 8, 2023). Participants of the study signed a voluntary informed consent in conformity with the 2013 Declaration of Helsinki.

Received: 2023-07-31 Accepted: 2023-08-22 Published online: 2023-09-28
|
  1. Akleev AA. Immunnyj status cheloveka v otdalennom periode xronicheskogo radiacionnogo vozdejstviya. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2020; 4 (65): 29–35. DOI: 10.12737/1024-6177-2020-65-4-29-35. Russian.
  2. Akleyev AV. Specific features of medical care provision to the population of the Techa riverside settlements. Journal of Radiological Protection. 2021; 41 (4): S342. DOI: 10.1088/13616498/ac0c02.
  3. Rybkina VL, Bannikova MV, Adamova GV, Dörr H, Scherthan H, Azizova TV. Immunological Markers of Chronic Occupational Radiation Exposure. Health Physics. 2018; 115 (1): 108–13. DOI: 10.1097/HP.0000000000000855.
  4. Ozasa K, Cullings HM, Ohishi W, Hida A, Grant EJ. Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation. International Journal of Radiation Biology. 2019; 95 (7): 879–91. DOI: 10.1080/09553002.2019.1569778.
  5. Bazyka DA, Prysyazhnyuk AY, Gudzenko NA, Fuzik MM, Trotsyuk NK, Babkina NG, et al. Late oncological aftereffects of radiation exposure caused by the chornobyl accident. Probl Radiac Med Radiobiol. 2022; 27: 138–49. English, Ukrainian. DOI: 10.33145/2304-8336-2022-27-138-149.
  6. Adliene D, Griciene B, Skovorodko K, Laurikaitiene J, Puiso J. Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers. Environmental Research. 2020; 183: 109–44. DOI: 10.1016/j. envres.2020.109144.
  7. Krestinina LYu, Silkin SS, Mikryukova LD, Epifanova SB, Akleev AV. Risk zabolevaemosti solidnymi zlokachestvennymi novoobrazovaniyami v Ural'skoj kogorte avarijno-obluchennogo naseleniya: 1956–2017. Radiacionnaya gigiena. 2020; 13 (3): 6–17. DOI: 10.21514/1998-426X-2020-13-3-6-17. Russian.
  8. Drozdovitch V. Radiation exposure to the thyroid after the chernobyl accident. Frontiers in Endocrinology (Lausanne). 2021 Jan [cited 2023 Apr 20]; 11: 569041. Available from: https://pubmed.ncbi.nlm.nih.gov/33469445/. DOI: 10.3389/fendo.2020.569041.
  9. Krestinina LYu, Silkin SS, Degteva MO, Akleev AV. Risk smerti ot boleznej sistemy krovoobrashheniya v Ural'skoj kogorte avarijnoobluchennogo naseleniya za 1950-2015 gody. Radiacionnaya gigiena. 2019; 12 (1): 52–61. DOI: 10.21514/1998-426X-2019-12-1-5261. Russian.
  10. Akleev AA, Dolgushin II. Osobennosti immunnogo statusa u lyudej, perenesshih hronicheskij luchevoj sindrom, v otdalennye sroki. Radiaciya i risk. 2018; 27 (2): 7666–85. DOI: 10.21870/01313878-2018-27-2-76-85. Russian.
  11. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Molecular Cancer. 2020 Jul [cited 2023 Apr 20]; 19 (1): 116. Available from: https://pubmed.ncbi.nlm.nih.gov/32680511/ DOI: 10.1186/s12943-020-01234-1.
  12. Ono M. Control of regulatory T–cell differentiation and function by T–cell receptor signalling and Foxp3 transcription factor complexes. Immunology. 2020; 160 (1): 24–37. DOI: 10.1111/ imm.13178
  13. Bending D, Paduraru A, Ducker CB, Prieto Martin P, Crompton T, Ono M. A temporally dynamic Foxp3 autoregulatory transcriptional circuit controls the effector Treg programme. EMBO Journal. 2018 Aug [cited 2023 Apr 20]; 37: e99013. Available from: https://pubmed.ncbi.nlm.nih.gov/29991564/. DOI: 10.15252/ embj.201899013
  14. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Science. 2019; 110 (7): 2080–9. DOI:10.1111/cas.14069.
  15. Emel S, Mehmet S. Epigenetical targeting of the FOXP3 gene by S-adenosylmethionine diminishes the suppressive capacity of regulatory T cells ex vivo and alters the expression profiles. Journal of Immunotherapy. 2019; 42 (1): 11–22. DOI: 10.1097/ CJI.0000000000000247.
  16. Beauford SS, Kumari A, Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunology. 2020 Apr [cited 2023 Apr 20]; 21 (1): 18. Available from: https://pubmed.ncbi.nlm. nih.gov/32299365/ DOI: 10.1186/s12865-020-00349-w, DOI: 10.1186/s12865-020-00363-y.
  17. Degteva MО, Napier BА, Tolstykh EI, Shishkina EA, Bougrov NG, Krestinina LYu, i dr. Raspredelenie individual'nyh doz v kogorte lyudej, obluchennyh v rezul'tate radioaktivnogo zagryazneniya reki Techi. Medicinskaya radiologiya i radiacionnaya bezopasnost'. 2019; 64 (3): 46–53. DOI: 10.12737/article_5cf2364 cb49523.98590475. Russian.
  18. Kishkun AA. Klinicheskaya laboratornaya diagnostika: uchebnoe posobie. M.: GEhOTAR-Media, 2019; 1000 s. Russian.
  19. Klaus Dzh, redaktor. Limfocity: metody. M.: Mir, 1990; 395 s. Russian.
  20. Slepov YuK, Laushkin MA, Deev RV. Gipoteza o roli immunnoj sistemy v kancerogeneze. Geny & Kletki. 2021; 16 (1): 82–91. DOI: 10.23868/202104013. Russian.
  21. Kodintseva ЕА, Akleyev АА, Blinova ЕА. Citokinovyj profil' lic, podvergshihsya hronicheskomu radiacionnomu vozdejstviyu, v otdalennye sroki posle oblucheniya. Radiacionnaya biologiya. Radioehkologiya. 2021; 5 (61): 506–14. DOI: 10.31857/ S0869803121050076. Russian.
  22. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annual Review of Immunology. 2020; 38: 541–66. DOI: 10.1146/annurevimmunol-042718-041717.
  23. Toker A, Ohashi PS. Expression of costimulatory and inhibitory receptors in FoxP3(+) regulatory T cells within the tumor microenvironment: implications for combination immunotherapy approaches. Advances in Cancer Research. 2019; 144: 193– 261. DOI: 10.1016/bs.acr.2019.05.001.
  24. Campbell C, Rudensky A. Roles of regulatory T cells in tissue pathophysiology and metabolism. Cell Metabolism. 2020; 31: 18–25. DOI: 10.1016/j.cmet.2019.09.010.
  25. Cuadrado E, van den Biggelaar M, de Kivit S, Chen YY, Slot M, Doubal I, Meijer A, van Lier RAW, Borst J, Amsen D. Proteomic analyses of human regulatory T cells reveal adaptations in signaling pathways that protect cellular identity. Immunity. 2018; 48: 1046–6. DOI: 10.1016/j.immuni.2018.04.008.
  26. Sullivan JA, Tomita Y, Jankowska-Gan E, Lema DA, Arvedson MP, Nair A et al. Treg-cell-derived IL-35-coated extracellular vesicles promote infectious tolerance. Cell Reports. 2020; 30: 1039–51. DOI: 10.1016/j.celrep.2019.12.081.
  27. Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C et al. Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nature Immunology. 2019; 20: 724–35. DOI: 10.1038/s41590-019-0346-9.
  28. Muroyama Y, Nirschl TR, Kochel CM, Lopez-Bujanda Z, Theodros D, Mao W, et al. Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment. Cancer Immunology Research. 2017; 5 (11): 992–1004. DOI: 10.1158/2326-6066.