ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ
Решение задачи формирования безопасной конфигурации роботического протеза верхней конечности человека
1 Центр развития науки, технологий и образования в области обороны и обеспечения безопасности государства, Национальный исследовательский Томский государственный университет, Томск, Россия
2 Федеральный научно-клинический центр медицинской реабилитации и курортологии Федерального медико-биологического агентства, Москва, Россия
Для корреспонденции: Дмитрий Сергеевич Жданов
ул. Красноармейская, д. 14, г. Томск, 634029, Россия; ur.liam@vonadhz_s_d
Финансирование: результаты были получены в рамках выполнения государственного задания Минобрнауки России, проект № FSWM-2022-0008.
Благодарности: заместителю генерального директора ФГБУ ФНКЦ МРиК ФМБА России Н. Абдулкиной за поддержку научного коллектива; проректору по научной и инновационной деятельности НИ ТГУ А. Ворожцову за помощь в развитии исследований в области медицинской робототехники.
Соблюдение этических стандартов: исследование одобрено этическим комитетом Федерального научно-клинического центра медицинской реабилитации и курортологии Федерального медико-биологического агентства (протокол № 1 от 06 июля 2022 г.).
- Lassig R, Lorenz M, Sissimators E, Wicker I, Buchner T. Robotics Outlook 2030: How intelligence and mobility will shape the future. 2021. The Boston Consulting Group.
- Joseph F. Robotics in Service. Engelberger, 1989; 248 p.
- Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse Events in Robotic Surgery: A Retrospective Study of 14 Years of FDA Data. PLOS ONE. 2016; 11 (4): e0151470. DOI: 10.1371/journal.pone.0151470.
- Taylor GR, Kleeman L. Grasping unknown objects with a humanoid robot. 2002.
- Kragic D, Christensen HA. Survey on Visual Servoing for Manipulation. Comput Vis Act Percept Lab. 2002; 15 p.
- Dong G, Zhu ZH. Position-based visual servo control of autonomous robotic manipulators. Acta Astronautica. 2015; 115: 291–302. DOI: 10.1016/j.actaastro.2015.05.036.
- Vahrenkamp N, Wieland S, Azad P, Gonzalez D, Asfour T, Dillmann R. Visual servoing for humanoid grasping and manipulation tasks. Humanoids 2008 — 8th IEEE-RAS International Conference on Humanoid Robots. 2000. DOI: 10.1109/ichr.2008.4755985.
- Chaumette F, Hutchinson S. Visual servo control, Part I: Basic approaches. IEEE Robotics and Automation Magazine. 2006; 13 (4): 82–90.
- Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation. 1992; 8 (3): 313–26. DOI: 10.1109/70.143350.
- Chaumette F. Potential problems of stability and convergence in image-based and position-based visual servoing. Lecture Notes in Control and Information Sciences. 66–78. DOI: 10.1007/ bfb0109663.
- Michel H, Rives P. Singularities in the determination of the situation of a robot efector from the perspective view of 3 points. Technical Report 1850, INRIA Research, 1993.
- Chaumette F. 2004. Image Moments: A General and Useful Set of Features for Visual Servoing. IEEE Transactions on Robotics. 20 (4): 713–23. DOI: 10.1109/tro.2004.829463.
- Tahri O, Chaumette F. Point-based and region-based image moments for visual servoing of planar objects. IEEE Transactions on Robotics. 2005; 21 (6): 1116–27. DOI: 10.1109/TRO.2005.853500.
- Tahri O, Mezouar Y, Chaumette F, Corke P. Decoupled ImageBased Visual Servoing for Cameras Obeying the Unified Projection Model. Robotics, IEEE Transactions on. 2010; 26: 684–97. DOI: 10.1109/TRO.2010.2051593.
- Dementhon DF, Davis LS. Model-based object pose in 25 lines of code. International Journal of Computer Vision. 1995; 15 (1–2): 123–41. DOI: 10.1007/bf01450852.
- Lowe DG. Three-dimensional object recognition from single twodimensional images. Artif Intell. 1987; 31: 355–95.
- Malis E, Chaumette F, Boudet S. 2-1/2D visual servoing. IEEE Transactions on Robotics and Automation. 1999; 15 (2): 238–50.
- Wilson WJ, Hulls CCW, Bell GS. Relative end-effector control using Cartesian position based visual servoing. IEEE Transactions on Robotics and Automation. 1996; 12 (5): 684–96. DOI: 10.1109/70.538974.
- Corke PI. Visual control of robot manipulators — a review. Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback. 1993; pp. 1–31.
- Corke PI, Hutchinson SA. A new partitioned approach to imagebased visual servo control. IEEE Transactions on Robotics and Automation. 2001; 17 (4): 507–15. DOI: 10.1109/70.954764.
- Deguchi K. Optimal motion control for image-based visual servoing by decoupling translation and rotation. Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. #. 98CH36190). DOI: 10.1109/iros.1998.727274.
- Gans NR, Hutchinson SA. Stable Visual Servoing Through Hybrid Switched-System Control. IEEE Transactions on Robotics. 2007; 23 (3): 530–40. DOI: 10.1109/tro.2007.895067.
- Kermorgant O, Chaumette F. Combining IBVS and PBVS to ensure the visibility constraint. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2011. DOI: 10.1109/iros.2011.6048254.
- Pang Y, Huang Q, Jia D, Tian Y, Gao J, Zhang W. Object manipulation of a humanoid robot based on visual Servoing. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007. DOI: 10.1109/iros.2007.4399445.
- Moughlbay AA, Cervera E, Martinet P. Real-time model based visual servoing tasks on a humanoid robot. Intelligent Autonomous Systems 12. Berlin, Heidelberg: Springer, 2013; c. 321–333.
- Agravante DJ, Cherubini A, Bussy A, Kheddar A. Humanhumanoid joint haptic table carrying task with height stabilization using vision. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013. DOI: 10.1109/iros.2013.6697019.
- Hogan N. Impedance Control: An Approach to Manipulation. American Control Conference. 1984; pp. 304–313. DOI: 10.23919/ACC.1984.4788393.
- Aristidou A, Lasenby J. FABRIK: A fast, iterative solver for the Inverse Kinematics problem. Graphical Models. 2011; 73 (5): 243–60. DOI: 10.1016/j.gmod.2011.05.003.